SATISFIABILITY (SAT)

- The **length** of a boolean expression is the length of the string encoding it.
- SATISFIABILITY (SAT): Given a CNF ϕ , is it satisfiable?
- Solvable in exponential time on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 119).
- A most important problem in settling the " $P \stackrel{?}{=} NP$ " problem (p. 312).

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- UNSAT (SAT COMPLEMENT): Given a boolean expression ϕ , is it unsatisfiable?
- VALIDITY: Given a boolean expression ϕ , is it valid?
 - $-\phi$ is valid if and only if $\neg\phi$ is unsatisfiable.
 - $-\phi$ and $\neg\phi$ are basically of the same length.
 - So unsat and validity have the same complexity.
- Both are solvable in exponential time on a TM by the truth table method.
- Can we do better?

Boolean Functions

• An *n*-ary boolean function is a function

```
f: \{\texttt{true}, \texttt{false}\}^n \to \{\texttt{true}, \texttt{false}\}.
```

- It can be represented by a truth table.
- There are 2^{2^n} such boolean functions.
 - We can assign **true** or **false** to f for each of the 2^n truth assignments.
- How about $\{\texttt{true}, \texttt{false}\}^n \to \{\texttt{true}, \texttt{false}\}^m$?

Boolean Functions (continued)		
Assignment	Truth value	
1	true or false	
2	true or false	
• • •	•	
2^n	true or false	

Boolean Functions (continued)

- A boolean expression expresses a boolean function.
 Think of its truth value under all truth assignments.
- A boolean function expresses a boolean expression.
 - $-\bigvee_{T \models \phi, \text{ literal } y_i \text{ is true in "row" } T}(y_1 \wedge \dots \wedge y_n).$ $* y_1 \wedge \dots \wedge y_n \text{ is called the$ **minterm** $over}$ $\{x_1, \dots, x_n\} \text{ for } T.^{a}$

- The size^b is $\leq n2^n \leq 2^{2n}$.

^aSimilar to **programmable logic array**. ^bWe count only the literals here.

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

The corresponding boolean expression:

$$(\neg x_1 \land \neg x_2) \lor (\neg x_1 \land x_2) \lor (x_1 \land x_2).$$

Boolean Functions (concluded)

Corollary 15 Every n-ary boolean function can be expressed by a boolean expression of size $O(n2^n)$.

- In general, the exponential length in *n* cannot be avoided (p. 211).
- The size of the truth table is also $O(n2^n)$.

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0, 1, or 2.
- Each gate has a **sort** from

 $\{\texttt{true},\texttt{false}, \lor, \land, \neg, x_1, x_2, \ldots\}.$

- There are n + 5 sorts.

Boolean Circuits (concluded)

- Gates with a sort from {true, false, x_1, x_2, \ldots } are the inputs of *C* and have an indegree of zero.
- The **output gate**(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- The same boolean function can be computed by infinitely many equivalent boolean circuits.

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:

CIRCUIT SAT and CIRCUIT VALUE

- CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?
 - CIRCUIT SAT \in NP: Guess a truth assignment and then evaluate the circuit.

CIRCUIT VALUE: The same as CIRCUIT SAT except that the circuit has no variable gates.

• CIRCUIT VALUE \in P: Evaluate the circuit from the input gates gradually towards the output gate.

Some Boolean Functions Need Exponential Circuits^a **Theorem 16 (Shannon (1949))** For any $n \ge 2$, there is an n-ary boolean function f such that no boolean circuits with $2^n/(2n)$ or fewer gates can compute it.

- There are 2^{2^n} different *n*-ary boolean functions (p. 201).
- So it suffices to prove that the number of boolean circuits with $2^n/(2n)$ or fewer gates is less than 2^{2^n} .

^aCan be strengthened to "almost all boolean functions . . ."

The Proof (concluded)

- There are at most $((n+5) \times m^2)^m$ boolean circuits with m or fewer gates (see next page).
- But $((n+5) \times m^2)^m < 2^{2^n}$ when $m = 2^n/(2n)$:

$$m \log_2((n+5) \times m^2)$$

$$= 2^n \left(1 - \frac{\log_2 \frac{4n^2}{n+5}}{2n}\right)$$

$$< 2^n$$

for $n \geq 2$.

Claude Elwood Shannon (1916–2001)

Howard Gardner, "[Shannon's master's thesis is] possibly the most important, and also the most famous, master's thesis of the century."

Comments

- The lower bound $2^n/(2n)$ is rather tight because an upper bound is $n2^n$ (p. 203).
- The proof counted the number of circuits.
 - Some circuits may not be valid at all.
 - Different circuits may also compute the same function.
- Both are fine because we only need an upper bound on the number of circuits.
- We do not need to consider the outdoing edges because they have been counted as incoming edges.

Relations between Complexity Classes

It is, I own, not uncommon to be wrong in theory and right in practice. — Edmund Burke (1729–1797), A Philosophical Enquiry into the Origin of Our Ideas of the Sublime and Beautiful (1757)

Proper (Complexity) Functions

- We say that f : N → N is a proper (complexity)
 function if the following hold:
 - -f is nondecreasing.
 - There is a k-string TM M_f such that $M_f(x) = \Box^{f(|x|)}$ for any x.^a
 - M_f halts after O(|x| + f(|x|)) steps.
 - M_f uses O(f(|x|)) space besides its input x.
- M_f 's behavior depends only on |x| not x's contents.
- M_f 's running time is bounded by f(n).

^aThe textbook calls " \square " the quasi-blank symbol. The use of $M_f(x)$ will become clear in Proposition 17 (p. 221).

Examples of Proper Functions

- Most "reasonable" functions are proper: c, $\lceil \log n \rceil$, polynomials of n, 2^n , \sqrt{n} , n!, etc.
- If f and g are proper, then so are f + g, fg, and 2^{g} .^a
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
 - For example, $\text{TIME}(f(n)) = \text{TIME}(2^{f(n)})$ for some recursive function f (the **gap theorem**).^b
- Only proper functions f will be used in TIME(f(n)), SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

^aFor f(g), we need to add $f(n) \ge n$. ^bTrakhtenbrot (1964); Borodin (1972).

Precise Turing Machines

- A TM M is precise if there are functions f and g such that for every n ∈ N, for every x of length n, and for every computation path of M,
 - M halts after precisely f(n) steps, and
 - All of its strings are of length precisely g(n) at halting.
 - * Recall that if M is a TM with input and output, we exclude the first and last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

Proposition 17 Suppose a TM^{a} M decides L within time (space) f(n), where f is proper. Then there is a precise TM M' which decides L in time O(n + f(n)) (space O(f(n)), respectively).

- M' on input x first simulates the TM M_f associated with the proper function f on x.
- M_f 's output of length f(|x|) will serve as a "yardstick" or an "alarm clock."

^aIt can be deterministic or nondeterministic.

The Proof (continued)

- Then M' simulates M(x).
- M'(x) halts when and only when the alarm clock runs out—even if M halts earlier.
- If f is a time bound:
 - The simulation of each step of M on x is matched by advancing the cursor on the "clock" string.
 - Because M' stops at the moment the "clock" string is exhausted—even if M(x) stops earlier, it is precise.
 - The time bound is therefore O(|x| + f(|x|)).

The Proof (concluded)

- If f is a space bound (sketchy):
 - M' simulates M on the quasi-blanks of M_f 's output string.
 - The total space, not counting the input string, is O(f(n)).
 - But we still need a way to make sure there is no infinite loop.^a

^aSee the proof of Theorem 24 on p. 239.

Important Complexity Classes

- We write expressions like n^k to denote the union of all complexity classes, one for each value of k.
- For example,

$$\operatorname{NTIME}(n^k) = \bigcup_{j>0} \operatorname{NTIME}(n^j).$$

Important Complexity Classes (concluded)

 $P = TIME(n^{k}),$ $NP = NTIME(n^{k}),$ $PSPACE = SPACE(n^{k}),$ $NPSPACE = NSPACE(n^{k}),$ $E = TIME(2^{kn}),$ $EXP = TIME(2^{n^{k}}),$ $L = SPACE(\log n),$ $NL = NSPACE(\log n).$

Complements of Nondeterministic Classes

- Recall that the **complement** of L, denoted by \overline{L} , is the language $\Sigma^* L$.
 - SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
- We knew that R, RE, and coRE are distinct (p. 172).
 - Again, coRE contains the complements of *languages* in RE, *not* the languages not in RE.
- How about coC when C is a complexity class?

The Co-Classes

• For any complexity class \mathcal{C} , $\mathrm{co}\mathcal{C}$ denotes the class

 $\{L: \bar{L} \in \mathcal{C}\}.$

- Clearly, if C is a *deterministic* time or space *complexity* class, then C = coC.
 - They are said to be **closed under complement**.
 - A deterministic TM deciding L can be converted to one that decides L
 within the same time or space bound by reversing the "yes" and "no" states (p. 169).
- Whether nondeterministic classes for time are closed under complement is not known (p. 111).

Comments

- As $\operatorname{co}\mathcal{C} = \{L : \overline{L} \in \mathcal{C}\},\$ $L \in \mathcal{C} \text{ if and only if } \overline{L} \in \operatorname{co}\mathcal{C}.$
- But it is *not* true that $L \in C$ if and only if $L \notin coC$. - coC is not defined as \overline{C} .
- For example, suppose $C = \{\{2, 4, 6, 8, 10, \ldots\}\}.$
- Then $\operatorname{co}\mathcal{C} = \{\{1, 3, 5, 7, 9, \ldots\}\}.$
- But $\overline{\mathcal{C}} = 2^{\{1,2,3,\ldots\}^*} \{\{2,4,6,8,10,\ldots\}\}.$

The Quantified Halting Problem

- Let $f(n) \ge n$ be proper.
- Define

 $H_f = \{M; x : M \text{ accepts input } x \\ \text{after at most } f(|x|) \text{ steps} \},$

where M is deterministic.

• Assume the input is binary.

$H_f \in \mathsf{TIME}(f(n)^3)$

- For each input M; x, we simulate M on x with an alarm clock of length f(|x|).
 - Use the single-string simulator (p. 87), the universal TM (p. 153), and the linear speedup theorem (p. 96).
 - Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 94, the total running time is $O(\ell_M k_M^2 f(n)^2)$, where ℓ_M is the length to encode each symbol or state of M and k_M is M's number of strings.
- As $\ell_M k_M^2 = O(n)$, the running time is $O(f(n)^3)$, where the constant is independent of M.

$H_f \notin \mathsf{TIME}(f(\lfloor n/2 \rfloor))$

- Suppose TM M_{H_f} decides H_f in time $f(\lfloor n/2 \rfloor)$.
- Consider machine:

```
D_f(M) \{ if M_{H_f}(M; M) = "yes" then "no"; else "yes"; \}
```

• D_f on input M runs in the same time as M_{H_f} on input M; M, i.e., in time $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$, where $n = |M|.^a$

^aA student pointed out on October 6, 2004, that this estimation omits the time to write down M; M.

• First,

$$D_f(D_f) =$$
 "yes"

$$\Rightarrow \quad D_f; D_f \not\in H_f$$

 $\Rightarrow D_f$ does not accept D_f within time $f(|D_f|)$

$$\Rightarrow D_f(D_f) \neq$$
 "yes"

$$\Rightarrow D_f(D_f) =$$
"no"

a contradiction

• Similarly, $D_f(D_f) =$ "no" $\Rightarrow D_f(D_f) =$ "yes."

The Time Hierarchy Theorem

Theorem 18 If $f(n) \ge n$ is proper, then

 $\operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}(f(2n+1)^3).$

• The quantified halting problem makes it so.

Corollary 19 $P \subsetneq E$.

• $P \subseteq TIME(2^n)$ because $poly(n) \le 2^n$ for n large enough.

• But by Theorem 18,

 $\text{TIME}(2^n) \subsetneq \text{TIME}((2^{2n+1})^3) \subseteq \text{E}.$

• So
$$P \subsetneq E$$
.

The Space Hierarchy Theorem **Theorem 20 (Hennie and Stearns (1966))** If f(n) is proper, then

 $SPACE(f(n)) \subsetneq SPACE(f(n) \log f(n)).$

Corollary 21 $L \subsetneq PSPACE$.

Nondeterministic Time Hierarchy Theorems **Theorem 22 (Cook (1973))** NTIME $(n^r) \subsetneq$ NTIME (n^s) whenever $1 \le r < s$.

Theorem 23 (Seiferas, Fischer, and Meyer (1978)) If $T_1(n), T_2(n)$ are proper, then

 $\operatorname{NTIME}(T_1(n)) \subsetneq \operatorname{NTIME}(T_2(n))$

whenever $T_1(n+1) = o(T_2(n)).$

The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- Two nodes are connected by a directed edge if one yields the other in one step.
- The start node representing the initial configuration has zero in degree.

The Reachability Method (concluded)

- When the TM is nondeterministic, a node may have an out degree greater than one.
 - The graph is the same as the computation tree earlier except that identical configuration nodes are merged into one node.
- So *M* accepts the input if and only if there is a path from the start node to a node with a "yes" state.
- It is the reachability problem.

Theorem 24 Suppose f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq SPACE(f(n))$.
- 3. NSPACE $(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)}).$
- Proof of 2:
 - Explore the computation tree of the NTM for "yes."
 - Specifically, generate an f(n)-bit sequence denoting the nondeterministic choices over f(n) steps.

Proof of Theorem 24(2)

- (continued)
 - Simulate the NTM based on the choices.
 - Recycle the space and repeat the above steps.
 - Halt with "yes" when a "yes" is encountered or "no" if the tree is exhausted.
 - Each path simulation consumes at most O(f(n))space because it takes O(f(n)) time.
 - The total space is O(f(n)) because space is recycled.

Proof of Theorem 24(3)

• Let *k*-string NTM

$$M = (K, \Sigma, \Delta, s)$$

with input and output decide $L \in \text{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a (2k+1)-tuple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$$

Proof of Theorem 24(3) (continued)

• We only care about

$$(q, i, w_2, u_2, \ldots, w_{k-1}, u_{k-1}),$$

where i is an integer between 0 and n for the position of the first cursor.

• The number of configurations is therefore at most

$$|K| \times (n+1) \times |\Sigma|^{(2k-4)f(n)} = O(c_1^{\log n + f(n)}) \quad (2)$$

for some c_1 , which depends on M.

• Add edges to the configuration graph based on *M*'s transition function.

Proof of Theorem 24(3) (concluded)

- x ∈ L ⇔ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i,...).^a
- This is REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes.
- It is in $\text{TIME}(c^{\log n + f(n)})$ for some c because REACHABILITY $\in \text{TIME}(n^j)$ for some j and

$$\left[c_1^{\log n + f(n)}\right]^j = (c_1^j)^{\log n + f(n)}.$$

^aThere may be many of them.

Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations earlier (p. 110), the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce a quasi-blank output of length f(n) first.
 - The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n + f(n)}$ steps for some c (p. 242).

Space-Bounded Computation and Proper Functions (concluded)

- (continued)
 - So an infinite loop occurs during simulation for a computation path longer than $c^{\log n + f(n)}$ steps.
 - Hence we only simulate up to $c^{\log n + f(n)}$ time steps per computation path.

A Grand Chain of Inclusions $^{\rm a}$

- It is an easy application of Theorem 24 (p. 239) that $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP.$
- By Corollary 21 (p. 234), we know $L \subsetneq PSPACE$.
- So the chain must break somewhere between L and EXP.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.

 $^{\rm a}{\rm With}$ input from Mr. Chin-Luei Chang (R93922004, D95922007) on October 22, 2004.

Nondeterministic Space and Deterministic Space

• By Theorem 5 (p. 116),

```
\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}(c^{f(n)}),
```

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic—a polynomial—by Savitch's theorem.