
Space Complexity

• Consider a k-string TM M with input x.

• Assume non-
⊔

is never written over by
⊔
.a

– The purpose is not to artificially reduce the space

needs (see below).

• If M halts in configuration

(H,w1, u1, w2, u2, . . . , wk, uk),

then the space required by M on input x is

k∑
i=1

|wiui|.

aCorrected by Ms. Chuan-Ju Wang (R95922018, F95922018) on

September 27, 2006.
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Space Complexity (continued)

• Suppose we do not charge the space used only for input

and output.

• Let k > 2 be an integer.

• A k-string Turing machine with input and output

is a k-string TM that satisfies the following conditions.

– The input string is read-only.

– The last string, the output string, is write-only.

– So the cursor never moves to the left.

– The cursor of the input string does not wander off

into the
⊔
s.
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Space Complexity (concluded)

• If M is a TM with input and output, then the space

required by M on input x is

k−1∑
i=2

|wiui|.

• Machine M operates within space bound f(n) for

f : N→ N if for any input x, the space required by M

on x is at most f(|x |).
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Space Complexity Classes

• Let L be a language.

• Then

L ∈ SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

• SPACE(f(n)) is a set of languages.

– palindrome ∈ SPACE(logn).a

• As in the linear speedup theorem (p. 96), constant

coefficients do not matter.

aKeep 3 counters.
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Nondeterminisma

• A nondeterministic Turing machine (NTM) is a

quadruple N = (K,Σ,∆, s).

• K,Σ, s are as before.

• ∆ ⊆ K × Σ× (K ∪ {h, “yes”, “no”})× Σ× {←,→,−} is
a relation, not a function.b

– For each state-symbol combination (q, σ), there may

be multiple valid next steps.

– Multiple lines of code may be applicable.

aRabin and Scott (1959).
bCorrected by Mr. Jung-Ying Chen (D95723006) on September 23,

2008.
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Nondeterminism (concluded)

• As before, a program contains lines of code:

(q1, σ1, p1, ρ1, D1) ∈ ∆,

(q2, σ2, p2, ρ2, D2) ∈ ∆,

...

(qn, σn, pn, ρn, Dn) ∈ ∆.

– We cannot write

δ(qi, σi) = (pi, ρi, Di)

as in the deterministic case (p. 22) anymore.

• A configuration yields another configuration in one step

if there exists a rule in ∆ that makes this happen.
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Michael O. Rabina (1931–)

aTuring Award (1976).
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Dana Stewart Scotta (1932–)

aTuring Award (1976).
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Computation Tree and Computation Path
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Decidability under Nondeterminism

• Let L be a language and N be an NTM.

• N decides L if for any x ∈ Σ∗, x ∈ L if and only if there

is a sequence of valid configurations that ends in “yes.”

• In other words,

– If x ∈ L, then N(x) = “yes” for some computation

path.

– If x ̸∈ L, then N(x) ̸= “yes” for all computation

paths.
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Decidability under Nondeterminism (concluded)

• It is not required that the NTM halts in all computation

paths.a

• If x ̸∈ L, no nondeterministic choices should lead to a

“yes” state.

• The key is the algorithm’s overall behavior not whether

it gives a correct answer for each particular run.

• Determinism is a special case of nondeterminism.

aSo “accepts” is a more proper term, and other books use “decides”

only when the NTM always halts.
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Complementing a TM’s Halting States

• Let M decide L, and M ′ be M after “yes”↔ “no”.

• If M is a deterministic TM, then M ′ decides L̄.

– So M and M ′ decide languages that are complements

of each other.

• But if M is an NTM, then M ′ may not decide L̄.

– It is possible that both M and M ′ accept x (see next

page).

– So M and M ′ accept languages that are not

complements of each other.
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Time Complexity under Nondeterminism

• Nondeterministic machine N decides L in time f(n),

where f : N→ N, if

– N decides L, and

– for any x ∈ Σ∗, N does not have a computation path

longer than f(|x |).

• We charge only the “depth” of the computation tree.
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Time Complexity Classes under Nondeterminism

• NTIME(f(n)) is the set of languages decided by NTMs

within time f(n).

• NTIME(f(n)) is a complexity class.
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NP

• Define

NP =
∪
k>0

NTIME(nk).

• Clearly P ⊆ NP.

• Think of NP as efficiently verifiable problems (see p.

326).

– Boolean satisfiability (p. 119 and p. 196).

• The most important open problem in computer science

is whether P = NP.
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Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 5 Suppose language L is decided by an NTM N

in time f(n). Then it is decided by a 3-string deterministic

TM M in time O(cf(n)), where c > 1 is some constant

depending on N .

• On input x, M goes down every computation path of N

using depth-first search.

– M does not need to know f(n).

– As N is time-bounded, the depth-first search will not

run indefinitely.
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The Proof (concluded)

• If any path leads to “yes,” then M immediately enters

the “yes” state.

• If none of the paths leads to “yes,” then M enters the

“no” state.

• The simulation takes time O(cf(n)) for some c > 1

because the computation tree has that many nodes.

Corollary 6 NTIME(f(n))) ⊆
∪

c>1 TIME(cf(n)).
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NTIME vs. TIME

• Does converting an NTM into a TM require exploring

all computation paths of the NTM as done in Theorem 5

(p. 116)?

• This is the most important question in theory with

important practical implications.
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A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {0, 1}; {Nondeterministic choice.}
3: end for

4: {Verification:}
5: if ϕ(x1, x2, . . . , xn) = 1 then

6: “yes”;

7: else

8: “no”;

9: end if

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 119



Computation Tree for Satisfiability
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Analysis

• The computation tree is a complete binary tree of depth

n.

• Every computation path corresponds to a particular

truth assignment out of 2n.

• ϕ is satisfiable iff there is a truth assignment that

satisfies ϕ.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 121



Analysis (concluded)

• The algorithm decides language {ϕ : ϕ is satisfiable}.
– Suppose ϕ is satisfiable.

∗ That means there is a truth assignment that

satisfies ϕ.

∗ So there is a computation path that results in

“yes.”

– Suppose ϕ is not satisfiable.

∗ That means every truth assignment makes ϕ false.

∗ So every computation path results in “no.”

• General paradigm: Guess a “proof” and then verify it.
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The Traveling Salesman Problem

• We are given n cities 1, 2, . . . , n and integer distance dij

between any two cities i and j.

• Assume dij = dji for convenience.

• The traveling salesman problem (tsp) asks for the

total distance of the shortest tour of the cities.

• The decision version tsp (d) asks if there is a tour with

a total distance at most B, where B is an input.a

aBoth problems are extremely important and are equally hard (p. 389

and p. 490).
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A Nondeterministic Algorithm for tsp (d)
1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {1, 2, . . . , n}; {The ith city.}a

3: end for

4: xn+1 := x1;

5: {Verification:}
6: if x1, x2, . . . , xn are distinct and

∑n
i=1 dxi,xi+1 ≤ B then

7: “yes”;

8: else

9: “no”;

10: end if

aCan be made into a series of log2 n binary choices for each xi so

that the next-state count (2) is a constant, independent of input size.

Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
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Analysis

• Suppose the input graph contains at least one tour of

the cities with a total distance at most B.

– Then there is a computation path that leads to

“yes.”a

• Suppose the input graph contains no tour of the cities

with a total distance at most B.

– Then every computation path leads to “no.”

aIt does not mean the algorithm will follow that path. It just means

such a computation path exists.
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Remarks on the P
?
= NP Open Problema

• Many practical applications depend on answers to the

P
?
= NP question.

• Verification of password is easy (so it is in NP).

– A computer should not take a long time to let a user

log in.

• A password system should be hard to crack (loosely

speaking, cracking it should not be in P).

• It took mathematicians and logicians 63 years to settle

the Continuum Hypothesis.

aContributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on

September 27, 2011.
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Nondeterministic Space Complexity Classes

• Let L be a language.

• Then

L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem (Theorem 4 on p. 96),

constant coefficients do not matter.
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Graph Reachability

• Let G(V,E) be a directed graph (digraph).

• reachability asks if, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first

search.

• How about its nondeterministic space complexity?
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The First Try: NSPACE(n log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x1 := a; {Assume a ̸= b.}
3: for i = 2, 3, . . . ,m do

4: Guess xi ∈ {v1, v2, . . . , vm}; {The ith node.}
5: end for

6: for i = 2, 3, . . . ,m do

7: if (xi−1, xi) ̸∈ E then

8: “no”;

9: end if

10: if xi = b then

11: “yes”;

12: end if

13: end for

14: “no”;
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In Fact, reachability ∈ NSPACE(log n)
1: Determine the number of nodes m; {Note m ≤ n.}
2: x := a;

3: for i = 2, 3, . . . ,m do

4: Guess y ∈ {v1, v2, . . . , vm}; {The next node.}
5: if (x, y) ̸∈ E then

6: “no”;

7: end if

8: if y = b then

9: “yes”;

10: end if

11: x := y;

12: end for

13: “no”;
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Space Analysis

• Variables m, i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the

input string with counters of O(log n) bits long.

• Hence

reachability ∈ NSPACE(logn).

– reachability with more than one terminal node

also has the same complexity.

• reachability ∈ P (p. 239).
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Undecidability
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God exists since mathematics is consistent,

and the Devil exists since we cannot prove it.

— André Weil (1906–1998)

Whatsoever we imagine is finite.

Therefore there is no idea, or conception

of any thing we call infinite.

— Thomas Hobbes (1588–1679), Leviathan
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Infinite Sets

• A set is countable if it is finite or if it can be put in

one-one correspondence with N = { 0, 1, . . . }, the set of

natural numbers.

– Set of integers Z.
∗ 0↔ 0.

∗ 1↔ 1, 2↔ 3, 3↔ 5, . . ..

∗ −1↔ 2,−2↔ 4,−3↔ 6, . . ..

– Set of positive integers Z+: i↔ i− 1.

– Set of positive odd integers: i↔ (i− 1)/2.

– Set of (positive) rational numbers: See next page.

– Set of squared integers: i↔
√
i .
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Rational Numbers Are Countable

5/25/1

1/51/21/1 1/3 1/4

2/1 2/2 2/3 2/4

3/1 3/2 3/3 3/4

4/1 4/2 4/3

1/6

2/5

6/1
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Cardinality

• For any set A, define |A| as A’s cardinality (size).

• Two sets are said to have the same cardinality, or

|A| = |B| or A ∼ B,

if there exists a one-to-one correspondence between their

elements.

• 2A denotes set A’s power set, that is {B : B ⊆ A}.
– E.g., { 0, 1 }’s power set is

2{ 0,1 } = { ∅, { 0 }, { 1 }, { 0, 1 } }.

• If |A| = k, then |2A| = 2k.
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Cardinality (concluded)

• Define |A| ≤ |B| if there is a one-to-one correspondence

between A and a subset of B’s.

• Obviously, if A ⊆ B, then |A| ≤ |B|.
– So |N | ≤ |Z |.
– So |N | ≤ |R |.

• Define |A| < |B| if |A| ≤ |B| but |A| ̸= |B|.

• If A ⊊ B, then |A| < |B|?
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Cardinality and Infinite Sets

• If A and B are infinite sets, it is possible that A ⊊ B yet

|A| = |B|.
– The set of integers properly contains the set of odd

integers.

– But the set of integers has the same cardinality as

the set of odd integers (p. 134).a

• A lot of “paradoxes.”

aLeibniz uses it to “prove” that there are no infinite numbers (Russell,

1914).
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Galileo’sa Paradox (1638)

• The squares of the positive integers can be placed in

one-to-one correspondence with all the positive integers.

• This is contrary to the axiom of Euclidb that the whole

is greater than any of its proper parts.c

• Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

• The difference between a mathematical paradox and a

contradiction is often a matter of opinions.

aGalileo (1564–1642).
bEuclid (325 B.C.–265 B.C.).
cLeibniz never challenges that axiom (Knobloch, 1999).
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Hilbert’sa Paradox of the Grand Hotel

• For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

• Now imagine a hotel with an infinite number of rooms,

all of which are occupied.

• A new guest comes and asks for a room.

• “But of course!” exclaims the proprietor.

• He moves the person previously occupying Room 1 to

Room 2, the person from Room 2 to Room 3, and so on.

• The new customer now occupies Room 1.

aDavid Hilbert (1862–1943).
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Hilbert’s Paradox of the Grand Hotel (concluded)

• Now imagine a hotel with an infinite number of rooms,

all taken up.

• An infinite number of new guests come in and ask for

rooms.

• “Certainly,” says the proprietor.

• He moves the occupant of Room 1 to Room 2, the

occupant of Room 2 to Room 4, and so on.

• Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

• “There are many rooms in my Father’s house, and I am

going to prepare a place for you.” (John 14:3)
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David Hilbert (1862–1943)
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The point of philosophy is

to start with something so simple

as not to seem worth stating,

and to end with something

so paradoxical that no one will believe it.

— Bertrand Russell (1872–1970)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 143


