Space Complexity

- Consider a k-string TM M with input x.
- Assume non- \bigsqcup is never written over by \bigsqcup. ${ }^{\text {a }}$
- The purpose is not to artificially reduce the space needs (see below).
- If M halts in configuration

$$
\left(H, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

then the space required by M on input x is

$$
\sum_{i=1}^{k}\left|w_{i} u_{i}\right|
$$

[^0]
Space Complexity (continued)

- Suppose we do not charge the space used only for input and output.
- Let $k>2$ be an integer.
- A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
- The input string is read-only.
- The last string, the output string, is write-only.
- So the cursor never moves to the left.
- The cursor of the input string does not wander off into the $\bigsqcup \mathrm{s}$.

Space Complexity (concluded)

- If M is a TM with input and output, then the space required by M on input x is

$$
\sum_{i=2}^{k-1}\left|w_{i} u_{i}\right|
$$

- Machine M operates within space bound $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.

Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{SPACE}(f(n))
$$

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

- $\operatorname{SPACE}(f(n))$ is a set of languages.
- Palindrome $\in \operatorname{SPACE}(\log n) .{ }^{\text {a }}$
- As in the linear speedup theorem (p. 96), constant coefficients do not matter.

[^1]
Nondeterminism ${ }^{\text {a }}$

- A nondeterministic Turing machine (NTM) is a quadruple $N=(K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \times(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ is a relation, not a function. ${ }^{\text {b }}$
- For each state-symbol combination (q, σ), there may be multiple valid next steps.
- Multiple lines of code may be applicable.

[^2]
Nondeterminism (concluded)

- As before, a program contains lines of code:

$$
\begin{aligned}
\left(q_{1}, \sigma_{1}, p_{1}, \rho_{1}, D_{1}\right) & \in \Delta \\
\left(q_{2}, \sigma_{2}, p_{2}, \rho_{2}, D_{2}\right) & \in \Delta, \\
\vdots & \\
\left(q_{n}, \sigma_{n}, p_{n}, \rho_{n}, D_{n}\right) & \in \Delta .
\end{aligned}
$$

- We cannot write

$$
\delta\left(q_{i}, \sigma_{i}\right)=\left(p_{i}, \rho_{i}, D_{i}\right)
$$

as in the deterministic case (p. 22) anymore.

- A configuration yields another configuration in one step if there exists a rule in Δ that makes this happen.

Michael O. Rabin ${ }^{\text {a }}$ (1931-)

${ }^{\text {a }}$ Turing Award (1976).

Dana Stewart Scott ${ }^{\text {a }}$ (1932-)

${ }^{\text {a }}$ Turing Award (1976).

Computation Tree and Computation Path

Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^{*}, x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
- In other words,
- If $x \in L$, then $N(x)=$ "yes" for some computation path.
- If $x \notin L$, then $N(x) \neq$ "yes" for all computation paths.

Decidability under Nondeterminism (concluded)

- It is not required that the NTM halts in all computation paths. ${ }^{\text {a }}$
- If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- The key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
- Determinism is a special case of nondeterminism.
"So "accepts" is a more proper term, and other books use "decides" only when the NTM always halts.

Complementing a TM's Halting States

- Let M decide L, and M^{\prime} be M after "yes" \leftrightarrow "no".
- If M is a deterministic TM, then M^{\prime} decides \bar{L}.
- So M and M^{\prime} decide languages that are complements of each other.
- But if M is an NTM, then M^{\prime} may not decide \bar{L}.
- It is possible that both M and M^{\prime} accept x (see next page).
- So M and M^{\prime} accept languages that are not complements of each other.

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time $f(n)$, where $f: \mathbb{N} \rightarrow \mathbb{N}$, if
- N decides L, and
- for any $x \in \Sigma^{*}, N$ does not have a computation path longer than $f(|x|)$.
- We charge only the "depth" of the computation tree.

Time Complexity Classes under Nondeterminism

- $\operatorname{NTIME}(f(n))$ is the set of languages decided by NTMs within time $f(n)$.
- $\operatorname{NTIME}(f(n))$ is a complexity class.

NP

- Define

$$
\mathrm{NP}=\bigcup_{k>0} \operatorname{NTIME}\left(n^{k}\right) .
$$

- Clearly $\mathrm{P} \subseteq$ NP.
- Think of NP as efficiently verifiable problems (see p. 326).
- Boolean satisfiability (p. 119 and p. 196).
- The most important open problem in computer science is whether $\mathrm{P}=\mathrm{NP}$.

Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.
Theorem 5 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic $T M M$ in time $O\left(c^{f(n)}\right)$, where $c>1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search.
- M does not need to know $f(n)$.
- As N is time-bounded, the depth-first search will not run indefinitely.

The Proof (concluded)

- If any path leads to "yes," then M immediately enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.
- The simulation takes time $O\left(c^{f(n)}\right)$ for some $c>1$ because the computation tree has that many nodes.

Corollary $6 \operatorname{NTIME}(f(n))) \subseteq \bigcup_{c>1} \operatorname{TIME}\left(c^{f(n)}\right)$.

NTIME vs. TIME

- Does converting an NTM into a TM require exploring all computation paths of the NTM as done in Theorem 5 (p. 116)?
- This is the most important question in theory with important practical implications.

A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{0,1\} ;\{$ Nondeterministic choice. $\}$
3: end for
4: \{Verification:\}
5: if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ then
6: "yes";
7: else
8: "no";
9: end if

Computation Tree for Satisfiability

Analysis

- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment out of 2^{n}.
- ϕ is satisfiable iff there is a truth assignment that satisfies ϕ.

Analysis (concluded)

- The algorithm decides language $\{\phi: \phi$ is satisfiable $\}$.
- Suppose ϕ is satisfiable.
* That means there is a truth assignment that satisfies ϕ.
* So there is a computation path that results in "yes."
- Suppose ϕ is not satisfiable. * That means every truth assignment makes ϕ false. * So every computation path results in "no."
- General paradigm: Guess a "proof" and then verify it.

The Traveling Salesman Problem

- We are given n cities $1,2, \ldots, n$ and integer distance $d_{i j}$ between any two cities i and j.
- Assume $d_{i j}=d_{j i}$ for convenience.
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input. ${ }^{\text {a }}$

[^3]```
 A Nondeterministic Algorithm for TSP (D)
 1: for }i=1,2,\ldots,n\mathrm{ do
```



```
 3: end for
 4: }\mp@subsup{x}{n+1}{}:=\mp@subsup{x}{1}{}
 5: {Verification:}
 6: if }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}\mathrm{ are distinct and }\mp@subsup{\sum}{i=1}{n}\mp@subsup{d}{\mp@subsup{x}{i}{},\mp@subsup{x}{i+1}{}}{}\leqB\mathrm{ then
 7: "yes";
 8: else
 9: "no";
10: end if
```

    \({ }^{\text {a }}\) Can be made into a series of \(\log _{2} n\) binary choices for each \(x_{i}\) so
    that the next-state count (2) is a constant, independent of input size.
Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

## Analysis

- Suppose the input graph contains at least one tour of the cities with a total distance at most $B$.
- Then there is a computation path that leads to "yes." a
- Suppose the input graph contains no tour of the cities with a total distance at most $B$.
- Then every computation path leads to "no."

[^4]
## Remarks on the $\mathrm{P} \stackrel{?}{=}$ NP Open Problem ${ }^{\text {a }}$

- Many practical applications depend on answers to the $\mathrm{P} \stackrel{?}{=} \mathrm{NP}$ question.
- Verification of password is easy (so it is in NP).
- A computer should not take a long time to let a user $\log \mathrm{in}$.
- A password system should be hard to crack (loosely speaking, cracking it should not be in P).
- It took mathematicians and logicians 63 years to settle the Continuum Hypothesis.

[^5]
## Nondeterministic Space Complexity Classes

- Let $L$ be a language.
- Then

$$
L \in \operatorname{NSPACE}(f(n))
$$

if there is an NTM with input and output that decides $L$ and operates within space bound $f(n)$.

- NSPACE $(f(n))$ is a set of languages.
- As in the linear speedup theorem (Theorem 4 on p. 96), constant coefficients do not matter.


## Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- REAChability asks if, given nodes $a$ and $b$, does $G$ contain a path from $a$ to $b$ ?
- Can be easily solved in polynomial time by breadth-first search.
- How about its nondeterministic space complexity?


## The First Try: NSPACE $(n \log n)$

1: Determine the number of nodes $m$; \{Note $m \leq n$.\}
2: $x_{1}:=a ;$ Assume $a \neq b$.\}
3: for $i=2,3, \ldots, m$ do
4: Guess $x_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;\{$ The $i$ th node. $\}$
5: end for
6: for $i=2,3, \ldots, m$ do
7: if $\left(x_{i-1}, x_{i}\right) \notin E$ then
8: "no";
9: end if
10: $\quad$ if $x_{i}=b$ then
11: "yes";
12: end if
13: end for
14: "no";

## In Fact, REACHABILITY $\in \operatorname{NSPACE}(\log n)$

1: Determine the number of nodes $m$; \{Note $m \leq n$.\}
2: $x:=a$;
3: for $i=2,3, \ldots, m$ do
4: Guess $y \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;\{$ The next node. $\}$
5: if $(x, y) \notin E$ then
6: "no";
7: end if
8: $\quad$ if $y=b$ then
9: "yes";
10: end if
11: $x:=y$;
12: end for
13: "no";

## Space Analysis

- Variables $m, i, x$, and $y$ each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

$$
\text { REACHABILITY } \in \text { NSPACE }(\log n)
$$

- REACHABILITY with more than one terminal node also has the same complexity.
- REACHABILITY $\in \mathrm{P}$ (p. 239).


## Undecidability

God exists since mathematics is consistent, and the Devil exists since we cannot prove it. - André Weil (1906-1998)

Whatsoever we imagine is finite. Therefore there is no idea, or conception of any thing we call infinite.

- Thomas Hobbes (1588-1679), Leviathan


## Infinite Sets

- A set is countable if it is finite or if it can be put in one-one correspondence with $\mathbb{N}=\{0,1, \ldots\}$, the set of natural numbers.
- Set of integers $\mathbb{Z}$.

$$
* 0 \leftrightarrow 0
$$

$$
* 1 \leftrightarrow 1,2 \leftrightarrow 3,3 \leftrightarrow 5, \ldots .
$$

$$
*-1 \leftrightarrow 2,-2 \leftrightarrow 4,-3 \leftrightarrow 6, \ldots
$$

- Set of positive integers $\mathbb{Z}^{+}: i \leftrightarrow i-1$.
- Set of positive odd integers: $i \leftrightarrow(i-1) / 2$.
- Set of (positive) rational numbers: See next page.
- Set of squared integers: $i \leftrightarrow \sqrt{i}$.


## Rational Numbers Are Countable



## Cardinality

- For any set $A$, define $|A|$ as $A$ 's cardinality (size).
- Two sets are said to have the same cardinality, or

$$
|A|=|B| \quad \text { or } \quad A \sim B,
$$

if there exists a one-to-one correspondence between their elements.

- $2^{A}$ denotes set $A$ 's power set, that is $\{B: B \subseteq A\}$.
- E.g., $\{0,1\}$ 's power set is $2^{\{0,1\}}=\{\emptyset,\{0\},\{1\},\{0,1\}\}$.
- If $|A|=k$, then $\left|2^{A}\right|=2^{k}$.


## Cardinality (concluded)

- Define $|A| \leq|B|$ if there is a one-to-one correspondence between $A$ and a subset of $B$ 's.
- Obviously, if $A \subseteq B$, then $|A| \leq|B|$.
- So $|\mathbb{N}| \leq|\mathbb{Z}|$.
- So $|\mathbb{N}| \leq|\mathbb{R}|$.
- Define $|A|<|B|$ if $|A| \leq|B|$ but $|A| \neq|B|$.
- If $A \subsetneq B$, then $|A|<|B|$ ?


## Cardinality and Infinite Sets

- If $A$ and $B$ are infinite sets, it is possible that $A \subsetneq B$ yet $|A|=|B|$.
- The set of integers properly contains the set of odd integers.
- But the set of integers has the same cardinality as the set of odd integers (p. 134). ${ }^{\text {a }}$
- A lot of "paradoxes."

[^6]
## Galileo's ${ }^{a}$ Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid ${ }^{\text {b }}$ that the whole is greater than any of its proper parts. ${ }^{\text {c }}$
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinions.

```
a}\mathrm{ a Galileo (1564-1642).
b}\mathrm{ Euclid (325 B.C.-265 B.C.).
c}\mp@subsup{}{}{c}Leibniz never challenges that axiom (Knobloch, 1999).
```


## Hilbert's ${ }^{\text {a }}$ Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now imagine a hotel with an infinite number of rooms, all of which are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor.
- He moves the person previously occupying Room 1 to Room 2, the person from Room 2 to Room 3, and so on.
- The new customer now occupies Room 1.

[^7]
## Hilbert's Paradox of the Grand Hotel (concluded)

- Now imagine a hotel with an infinite number of rooms, all taken up.
- An infinite number of new guests come in and ask for rooms.
- "Certainly," says the proprietor.
- He moves the occupant of Room 1 to Room 2, the occupant of Room 2 to Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)


## David Hilbert (1862-1943)



The point of philosophy is to start with something so simple as not to seem worth stating, and to end with something so paradoxical that no one will believe it.

- Bertrand Russell (1872-1970)


[^0]:    ${ }^{\text {a }}$ Corrected by Ms. Chuan-Ju Wang (R95922018, F95922018) on September 27, 2006.

[^1]:    ${ }^{\text {a }}$ Keep 3 counters.

[^2]:    ${ }^{\text {a }}$ Rabin and Scott (1959).
    ${ }^{\mathrm{b}}$ Corrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.

[^3]:    ${ }^{\text {a }}$ Both problems are extremely important and are equally hard (p. 389 and p. 490).

[^4]:    ${ }^{\text {a }}$ It does not mean the algorithm will follow that path. It just means such a computation path exists.

[^5]:    ${ }^{\text {a }}$ Contributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.

[^6]:    a Leibniz uses it to "prove" that there are no infinite numbers (Russell, 1914).

[^7]:    ${ }^{\text {a }}$ David Hilbert (1862-1943).

