The Kleene Star Operation *a

- \bullet Let A be a set.
- The **Kleene star** of A, denoted by A^* , is the set of all strings obtained by concatenating zero or more strings from A.
 - For example, suppose $A = \{0, 1\}$.
 - Then

$$A^* = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, \dots \}.$$

- Note that every string in A^* must be of finite length.

^aKleene (1956).

Decidability and Recursive Languages

- Let $L \subseteq (\Sigma \{ \coprod \})^*$ be a **language**, i.e., a set of strings of non-| | symbols, with a *finite* length.
 - For example, $\{0, 01, 10, 210, 1010, \ldots\}$.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "yes."
 - If $x \notin L$, then M(x) = "no."
- We say M decides L.
- If there exists a TM that decides L, then L is recursive or decidable.

^aLittle to do with the concept of "recursive" calls.

Recursive and Nonrecursive Languages: Examples

- The set of palindromes over any alphabet is recursive.^a
- The set of prime numbers $\{2, 3, 5, 7, 11, 13, 17, \dots\}$ is recursive.^b
- The set of C programs that do not contain a while, a for, or a goto is recursive.
- But, the set of C programs that do not contain an infinite loop is *not* recursive (see p. 155).

^aNeed a program that returns "yes" iff the input is a palindrome.

^bNeed a program that returns "yes" iff the input is a prime.

^cNeed a program that returns "yes" iff the input C code does not contain any of the keywords.

Acceptability and Recursively Enumerable Languages

- Let $L \subseteq (\Sigma \{ \coprod \})^*$ be a language.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "yes."
 - If $x \notin L$, then $M(x) = \nearrow$.a
- We say M accepts L.
- How to verify that a TM decides/accepts a language is a different matter.^b

^aThis part is different from recursive languages.

^bThanks to a lively discussion on September 23, 2014.

Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is called a recursively enumerable language.^a
 - A recursively enumerable language can be generated
 by a TM, thus the name.^b
 - That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.
 - If L is infinite in size, this algorithm will not terminate.

^aPost (1944).

^bThanks to a lively class discussion on September 20, 2011.

Emil Post (1897–1954)

Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively enumerable.

- Let TM M decide L.
- Need to design a TM that accepts L.
- We will modify M to obtain an M' that accepts L.

The Proof (concluded)

- M' is identical to M except that when M is about to halt with a "no" state, M' goes into an infinite loop.
 - Simply replace any instruction that results in a "no" state with ones that move the cursor to the right forever and never halts.
- M' accepts L.
 - If $x \in L$, then M'(x) = M(x) = "yes."
 - If $x \notin L$, then M(x) = "no" and so $M'(x) = \nearrow$.

Recursively Enumerable Languages: Examples

- The set of C program-input pairs that do not run into an infinite loop is recursively enumerable.
 - Just run its binary code in a simulator environment.
 - Then the simulator will terminate if and only if the C program will terminate.
 - When the C program terminates, the simulator simply exits with a "yes" state.
- The set of C programs that contain an infinite loop is not recursively enumerable (see p. 155).

Turing-Computable Functions

- Let $f:(\Sigma \{ \sqcup \})^* \to \Sigma^*$.
 - Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ .
- M computes f if for any string $x \in (\Sigma \{ \coprod \})^*$, M(x) = f(x).
- We call f a **recursive function**^a if such an M exists.

^aKurt Gödel (1931, 1934).

Kurt Gödela (1906–1978)

Quine (1978), "this theorem $[\cdots]$ sealed his immortality."

^aThis photo was taken by Alfred Eisenstaedt (1898–1995).

Church's Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms.^a
- No "intuitively computable" problems have been shown not to be Turing-computable, yet.^b

^aChurch (1936); Kleene (1953).

^bQuantum computer of Manin (1980) and Feynman (1982) and DNA computer of Adleman (1994).

Church's Thesis or the Church-Turing Thesis (concluded)

- Many other computation models have been proposed.
 - Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.

Alonso Church (1903–1995)

Stephen Kleene (1909–1994)

Extended Church's Thesis^a

- All "reasonably succinct encodings" of problems are polynomially related (e.g., n^2 vs. n^6).
 - Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 - The unary representation of numbers is not succinct.
 - The binary representation of numbers is succinct.
 - * 1001_2 vs. 1111111111_1 .
- All numbers for TMs will be binary from now on.

^aSome call it "polynomial Church's thesis," which Lószló Lovász attributed to Leonid Levin.

Extended Church's Thesis (concluded)

- Representations that are not succinct may give misleadingly low complexities.
 - Consider an algorithm with binary inputs that runs in 2^n steps.
 - Suppose the input uses unary representation instead.
 - Then the same algorithm runs in linear time because the input length is now $2^n!$
- So a succinct representation is for honest accounting.

Physical Church-Turing Thesis

- "[Church's thesis] is a profound claim about the physical laws of our universe, i.e.: any physical system that purports to be a 'computer' is not capable of any computational task that a Turing machine is incapable of." a
- "Anything computable in physics can also be computed on a Turing machine." b
- The universe is a Turing machine.^c

^aWarren Smith (1998).

^bCooper (2012).

^cEdward Fredkin's (1992) digital physics.

The Strong Turing-Church Thesis^a

• The strong Turing-Church Thesis states that:

A Turing machine can compute *any* function computable by any "reasonable" physical device with only polynomial slowdown.

• A CPU and a DSP chip are good examples of physical devices.^b

^aVergis, Steiglitz, and Dickinson (1986).

^bThanks to a lively discussion on September 23, 2014.

Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta: K \times \Sigma^k \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$.
- All strings start with a \triangleright .
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is the last (kth) string.

PALINDROME Revisited

- A 2-string TM can decide PALINDROME in O(n) steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The symbols under the cursors are then compared.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.

PALINDROME Revisited (concluded)

- The running times of a 2-string TM and a single-string TM are quadratically related: n^2 vs. n.
- This is consistent with extended Church's thesis.

Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a (2k + 1)-tuple

$$(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k).$$

- $-w_iu_i$ is the *i*th string.
- The ith cursor is reading the last symbol of w_i .
- Recall that \triangleright is each w_i 's first symbol.
- The k-string TM's initial configuration is

$$(s, \underbrace{\triangleright, x, \triangleright, \epsilon}_{1}, \underbrace{\triangleright, \epsilon, \cdots, \triangleright, \epsilon}_{2}).$$

Time seemed to be
the most obvious measure
of complexity.
— Stephen Arthur Cook (1939–)

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TMs.
- If a k-string TM M halts after t steps on input x, then the **time required by** M **on input** x is t.
- If $M(x) = \nearrow$, then the time required by M on x is ∞ .

Time Complexity (concluded)

- Machine M operates within time f(n) for $f: \mathbb{N} \to \mathbb{N}$ if for any input string x, the time required by M on x is at most f(|x|).
 - |x| is the length of string x.
- Function f(n) is a **time bound** for M.

Time Complexity Classes^a

- Suppose language $L \subseteq (\Sigma \{ \coprod \})^*$ is decided by a multistring TM operating in time f(n).
- We say $L \in \text{TIME}(f(n))$.
- TIME(f(n)) is the set of languages decided by TMs with multiple strings operating within time bound f(n).
- TIME(f(n)) is a **complexity class**.
 - Palindrome is in TIME(f(n)), where f(n) = O(n).

^aHartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns (1965).

Juris Hartmanis^a (1928–)

^aTuring Award (1993).

Richard Edwin Stearns^a (1936–)

^aTuring Award (1993).

The Simulation Technique

Theorem 3 Given any k-string M operating within time f(n), there exists a (single-string) M' operating within time $O(f(n)^2)$ such that M(x) = M'(x) for any input x.

• The single string of M' implements the k strings of M.

The Proof

• Represent configuration $(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k)$ of M by this string of M':

$$(q, \triangleright w_1'u_1 \triangleleft w_2'u_2 \triangleleft \cdots \triangleleft w_k'u_k \triangleleft \triangleleft).$$

- \triangleleft is a special delimiter.
- $-w'_i$ is w_i with the first and last symbols "primed."
- It serves the purpose of "," in a configuration.^b

^aThe first symbol is always \triangleright .

^bAn alternative is to use $(q, \triangleright w'_1u_1, ' \triangleleft w'_2, 'u_2 \triangleleft \cdots \triangleleft w'_k, 'u_k \triangleleft \triangleleft)$ by priming only \triangleright in w_i , where "," is a new symbol.

- The "priming" of the last symbol of w_i ensures that M' knows which symbol is under each cursor of M.
- The first symbol of w_i is the primed version of \triangleright : \triangleright' .
 - Recall TM cursors are not allowed to move to the left of \triangleright (p. 21).
 - Now the cursor of M' can move between the simulated strings of M.

^aAdded because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

^bThanks to a lively discussion on September 22, 2009.

• The initial configuration of M' is

$$(s, \rhd \rhd'' x \lhd \overbrace{\rhd'' \lhd \cdots \rhd'' \lhd \lhd}^{k-1 \text{ pairs}}).$$

 — ▷ is double-primed because it is the beginning and the ending symbol as the cursor is reading it.^a

^aAdded after the class discussion on September 20, 2011.

- We simulate each move of M thus:
 - 1. M' scans the string to pick up the k symbols under the cursors.
 - The states of M' must be enlarged to include $K \times \Sigma^k$ to remember them.^a
 - The transition functions of M' must also reflect it.
 - 2. M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

^aRecall the TM program on p. 27.

- It is possible that some strings of M need to be lengthened (see next page).
 - The linear-time algorithm on p. 40 can be used for each such string.
- The simulation continues until M halts.
- M' then erases all strings of M except the last one. a

^aBecause whatever appears on the string of M' will be considered the output. So those \triangleright 's and \triangleright "s need to be removed.

string 1	string 2	string 3	string 4
	T	<u> </u>	
string 1	string 2	string 3	string 4

- Since M halts within time f(|x|), none of its strings ever becomes longer than f(|x|).
- The length of the string of M' at any time is O(kf(|x|)).
- Simulating each step of M takes, per string of M, O(kf(|x|)) steps.
 - O(f(|x|)) steps to collect information from this string.
 - O(kf(|x|)) steps to write and, if needed, to lengthen the string.

^aWe tacitly assume $f(n) \ge n$.

The Proof (concluded)

- M' takes $O(k^2 f(|x|))$ steps to simulate each step of M because there are k strings.
- As there are f(|x|) steps of M to simulate, M' operates within time $O(k^2f(|x|)^2)$.

Theorem 4 Let $L \in TIME(f(n))$. Then for any $\epsilon > 0$, $L \in TIME(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

^aHartmanis and Stearns (1965).

Implications of the Speedup Theorem

- State size can be traded for speed.^a
- If f(n) = cn with c > 1, then c can be made arbitrarily close to 1.
- If f(n) is superlinear, say $f(n) = 14n^2 + 31n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
 - Arbitrary linear speedup can be achieved.^b
 - This justifies the big-O notation in the analysis of algorithms.

 $^{{}^{\}mathbf{a}}m^k \cdot |\Sigma|^{3mk}$ -fold increase to gain a speedup of O(m). No free lunch. ${}^{\mathbf{b}}$ Can you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.

P

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k for some $k \geq 1$.
- If L is a **polynomially decidable language**, it is in $TIME(n^k)$ for some $k \in \mathbb{N}$.
 - Clearly, $TIME(n^k) \subseteq TIME(n^{k+1})$.
- The union of all polynomially decidable languages is denoted by P:

$$P = \bigcup_{k>0} TIME(n^k).$$

• P contains problems that can be efficiently solved.

Philosophers have explained space.

They have not explained time.

— Arnold Bennett (1867–1931),

How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation attributed to me that says 640K of memory is enough.

— Bill Gates (1996)