The Kleene Star Operation $*^{a}$

- Let A be a set.
- The Kleene star of A, denoted by A^{*}, is the set of all strings obtained by concatenating zero or more strings from A.
- For example, suppose $A=\{0,1\}$.
- Then

$$
A^{*}=\{\epsilon, 0,1,00,01,10,11,000, \ldots\} .
$$

- Note that every string in A^{*} must be of finite length.

[^0]
Decidability and Recursive Languages

- Let $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ be a language, i.e., a set of strings of non- \downarrow symbols, with a finite length.
- For example, $\{0,01,10,210,1010, \ldots\}$.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=$ "no."
- We say M decides L.
- If there exists a TM that decides L, then L is recursive ${ }^{\mathrm{a}}$ or decidable.

[^1]
Recursive and Nonrecursive Languages: Examples

- The set of palindromes over any alphabet is recursive. ${ }^{\text {a }}$
- The set of prime numbers $\{2,3,5,7,11,13,17, \ldots\}$ is recursive. ${ }^{\text {b }}$
- The set of C programs that do not contain a while, a for, or a goto is recursive. ${ }^{\text {c }}$
- But, the set of C programs that do not contain an infinite loop is not recursive (see p. 155).

[^2]
Acceptability and Recursively Enumerable Languages

- Let $L \subseteq(\Sigma-\{\sqcup\})^{*}$ be a language.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=\nearrow$. ${ }^{\text {a }}$
- We say M accepts L.
- How to verify that a TM decides/accepts a language is a different matter. ${ }^{\text {b }}$
${ }^{\text {a }}$ This part is different from recursive languages.
${ }^{\mathrm{b}}$ Thanks to a lively discussion on September 23, 2014.

Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some TM, then L is called a recursively enumerable language. ${ }^{\text {a }}$
- A recursively enumerable language can be generated by a TM, thus the name. ${ }^{\text {b }}$
- That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.
- If L is infinite in size, this algorithm will not terminate.

[^3]

Recursive and Recursively Enumerable Languages

 Proposition 2 If L is recursive, then it is recursively enumerable.- Let TM M decide L.
- Need to design a TM that accepts L.
- We will modify M to obtain an M^{\prime} that accepts L.

The Proof (concluded)

- M^{\prime} is identical to M except that when M is about to halt with a "no" state, M^{\prime} goes into an infinite loop.
- Simply replace any instruction that results in a "no" state with ones that move the cursor to the right forever and never halts.
- M^{\prime} accepts L.
- If $x \in L$, then $M^{\prime}(x)=M(x)=$ "yes."
- If $x \notin L$, then $M(x)=$ "no" and so $M^{\prime}(x)=\nearrow$.

Recursively Enumerable Languages: Examples

- The set of C program-input pairs that do not run into an infinite loop is recursively enumerable.
- Just run its binary code in a simulator environment.
- Then the simulator will terminate if and only if the C program will terminate.
- When the C program terminates, the simulator simply exits with a "yes" state.
- The set of C programs that contain an infinite loop is not recursively enumerable (see p. 155).

Turing-Computable Functions

- Let $f:(\Sigma-\{\bigsqcup\})^{*} \rightarrow \Sigma^{*}$.
- Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ.
- M computes f if for any string $x \in(\Sigma-\{\bigsqcup\})^{*}$, $M(x)=f(x)$.
- We call f a recursive function ${ }^{\text {a }}$ if such an M exists.

[^4]
Kurt Gödel ${ }^{\text {a }}$ (1906-1978)

Quine (1978), "this theorem [...] sealed his immortality."

${ }^{\text {a }}$ This photo was taken by Alfred Eisenstaedt (1898-1995).

Church's Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms. ${ }^{\text {a }}$
- No "intuitively computable" problems have been shown not to be Turing-computable, yet. ${ }^{\text {b }}$

[^5]
Church's Thesis or the Church-Turing Thesis (concluded)

- Many other computation models have been proposed.
- Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson \& Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.

Alonso Church (1903-1995)

Stephen Kleene (1909-1994)

Extended Church's Thesis ${ }^{\text {a }}$

- All "reasonably succinct encodings" of problems are polynomially related (e.g., n^{2} vs. n^{6}).
- Representations of a graph as an adjacency matrix and as a linked list are both succinct.
- The unary representation of numbers is not succinct.
- The binary representation of numbers is succinct. * 1001_{2} vs. 111111111_{1}.
- All numbers for TMs will be binary from now on.
aSome call it "polynomial Church's thesis," which Lószló Lovász attributed to Leonid Levin.

Extended Church's Thesis (concluded)

- Representations that are not succinct may give misleadingly low complexities.
- Consider an algorithm with binary inputs that runs in 2^{n} steps.
- Suppose the input uses unary representation instead.
- Then the same algorithm runs in linear time because the input length is now 2^{n} !
- So a succinct representation is for honest accounting.

Physical Church-Turing Thesis

- "[Church's thesis] is a profound claim about the physical laws of our universe, i.e.: any physical system that purports to be a 'computer' is not capable of any computational task that a Turing machine is incapable of." ${ }^{a}$
- "Anything computable in physics can also be computed on a Turing machine." ${ }^{\text {b }}$
- The universe is a Turing machine. ${ }^{\text {c }}$

```
a}\mathrm{ Warren Smith (1998).
b}\mathrm{ Cooper (2012).
c
```


The Strong Turing-Church Thesis ${ }^{\text {a }}$

- The strong Turing-Church Thesis states that:

A Turing machine can compute any function computable by any "reasonable" physical device with only polynomial slowdown.

- A CPU and a DSP chip are good examples of physical devices. ${ }^{\text {b }}$

[^6]
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M=(K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta: K \times \Sigma^{k} \rightarrow(K \cup\{h$, "yes", "no" $\}) \times(\Sigma \times\{\leftarrow, \rightarrow,-\})^{k}$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is the last (k th) string.

A 2-String TM

PALINDROME Revisited

- A 2 -string TM can decide Palindrome in $O(n)$ steps.
- It copies the input to the second string.
- The cursor of the first string is positioned at the first symbol of the input.
- The cursor of the second string is positioned at the last symbol of the input.
- The symbols under the cursors are then compared.
- The two cursors are then moved in opposite directions until the ends are reached.
- The machine accepts if and only if the symbols under the two cursors are identical at all steps.

PaLINDROME Revisited (concluded)

- The running times of a 2 -string TM and a single-string TM are quadratically related: n^{2} vs. n.
- This is consistent with extended Church's thesis.

Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

$-w_{i} u_{i}$ is the i th string.

- The i th cursor is reading the last symbol of w_{i}.
- Recall that \triangleright is each w_{i} 's first symbol.
- The k-string TM's initial configuration is

Time seemed to be the most obvious measure of complexity. - Stephen Arthur Cook (1939-)

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TMs.
- If a k-string TM M halts after t steps on input x, then the time required by M on input x is t.
- If $M(x)=\nearrow$, then the time required by M on x is ∞.

Time Complexity (concluded)

- Machine M operates within time $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.
$-|x|$ is the length of string x.
- Function $f(n)$ is a time bound for M.

Time Complexity Classes ${ }^{\text {a }}$

- Suppose language $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \operatorname{TIME}(f(n))$.
- $\operatorname{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\operatorname{TIME}(f(n))$ is a complexity class.
- Palindrome is in $\operatorname{TIME}(f(n))$, where $f(n)=O(n)$.

[^7]
Juris Hartmanis ${ }^{\mathrm{a}}$ (1928-)

${ }^{\text {a }}$ Turing Award (1993).

Richard Edwin Stearns ${ }^{\text {a }}$ (1936-)

${ }^{\text {a }}$ Turing Award (1993).

The Simulation Technique

Theorem 3 Given any k-string M operating within time $f(n)$, there exists a (single-string) M^{\prime} operating within time $O\left(f(n)^{2}\right)$ such that $M(x)=M^{\prime}(x)$ for any input x.

- The single string of M^{\prime} implements the k strings of M.

The Proof

- Represent configuration $\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)$ of M by this string of M^{\prime} :

$$
\left(q, \triangleright w_{1}^{\prime} u_{1} \triangleleft w_{2}^{\prime} u_{2} \triangleleft \cdots \triangleleft w_{k}^{\prime} u_{k} \triangleleft \triangleleft\right) .
$$

$-\triangleleft$ is a special delimiter.
$-w_{i}^{\prime}$ is w_{i} with the first ${ }^{\mathrm{a}}$ and last symbols "primed."

- It serves the purpose of "," in a configuration. ${ }^{\text {b }}$

[^8]
The Proof (continued)

- The "priming" of the last symbol of w_{i} ensures that M^{\prime} knows which symbol is under each cursor of M. ${ }^{\text {a }}$
- The first symbol of w_{i} is the primed version of $\triangleright: \triangleright^{\prime}$.
- Recall TM cursors are not allowed to move to the left of \triangleright (p.21).
- Now the cursor of M^{\prime} can move between the simulated strings of $M .{ }^{\text {b }}$

[^9]
The Proof (continued)

- The initial configuration of M^{\prime} is

$$
(s, \triangleright \triangleright^{\prime \prime} x \triangleleft \overbrace{\triangleright^{\prime \prime} \triangleleft \cdots \triangleright^{\prime \prime} \triangleleft}^{k-1 \text { pairs }} \triangleleft) .
$$

- \triangleright is double-primed because it is the beginning and the ending symbol as the cursor is reading it. ${ }^{\text {a }}$

[^10]
The Proof (continued)

- We simulate each move of M thus:

1. M^{\prime} scans the string to pick up the k symbols under the cursors.

- The states of M^{\prime} must be enlarged to include $K \times \Sigma^{k}$ to remember them. ${ }^{\text {a }}$
- The transition functions of M^{\prime} must also reflect it.

2. M^{\prime} then changes the string to reflect the overwriting of symbols and cursor movements of M.
[^11]
The Proof (continued)

- It is possible that some strings of M need to be lengthened (see next page).
- The linear-time algorithm on p. 40 can be used for each such string.
- The simulation continues until M halts.
- M^{\prime} then erases all strings of M except the last one. ${ }^{\text {a }}$

[^12]

The Proof (continued)

- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$. ${ }^{\text {a }}$
- The length of the string of M^{\prime} at any time is $O(k f(|x|))$.
- Simulating each step of M takes, per string of M, $O(k f(|x|))$ steps.
- $O(f(|x|))$ steps to collect information from this string.
- $O(k f(|x|))$ steps to write and, if needed, to lengthen the string.

[^13]
The Proof (concluded)

- M^{\prime} takes $O\left(k^{2} f(|x|)\right)$ steps to simulate each step of M because there are k strings.
- As there are $f(|x|)$ steps of M to simulate, M^{\prime} operates within time $O\left(k^{2} f(|x|)^{2}\right)$.

Linear Speedup ${ }^{\text {a }}$

Theorem 4 Let $L \in \operatorname{TIME}(f(n))$. Then for any $\epsilon>0$, $L \in \operatorname{TIME}\left(f^{\prime}(n)\right)$, where $f^{\prime}(n)=\epsilon f(n)+n+2$.
${ }^{\text {a }}$ Hartmanis and Stearns (1965).

Implications of the Speedup Theorem

- State size can be traded for speed. ${ }^{\text {a }}$
- If $f(n)=c n$ with $c>1$, then c can be made arbitrarily close to 1 .
- If $f(n)$ is superlinear, say $f(n)=14 n^{2}+31 n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
- Arbitrary linear speedup can be achieved. ${ }^{\text {b }}$
- This justifies the big-O notation in the analysis of algorithms.

[^14]
P

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^{k} for some $k \geq 1$.
- If L is a polynomially decidable language, it is in $\operatorname{TIME}\left(n^{k}\right)$ for some $k \in \mathbb{N}$.
- Clearly, $\operatorname{TIME}\left(n^{k}\right) \subseteq \operatorname{TIME}\left(n^{k+1}\right)$.
- The union of all polynomially decidable languages is denoted by P:

$$
\mathrm{P}=\bigcup_{k>0} \operatorname{TIME}\left(n^{k}\right)
$$

- P contains problems that can be efficiently solved.

Philosophers have explained space. They have not explained time. - Arnold Bennett (1867-1931), How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation attributed to me that says 640 K of memory is enough.

- Bill Gates (1996)

[^0]: ${ }^{\text {a }}$ Kleene (1956).

[^1]: a Little to do with the concept of "recursive" calls.

[^2]: ${ }^{\text {a }}$ Need a program that returns "yes" iff the input is a palindrome.
 ${ }^{\mathrm{b}}$ Need a program that returns "yes" iff the input is a prime.
 ${ }^{c}$ Need a program that returns "yes" iff the input C code does not contain any of the keywords.

[^3]: ${ }^{\text {a Post (1944). }}$
 ${ }^{\mathrm{b}}$ Thanks to a lively class discussion on September 20, 2011.

[^4]: ${ }^{\text {a }}$ Kurt Gödel $(1931,1934)$.

[^5]: ${ }^{\text {a }}$ Church (1936); Kleene (1953).
 ${ }^{\text {b }}$ Quantum computer of Manin (1980) and Feynman (1982) and DNA computer of Adleman (1994).

[^6]: ${ }^{\text {a }}$ Vergis, Steiglitz, and Dickinson (1986).
 ${ }^{\mathrm{b}}$ Thanks to a lively discussion on September 23, 2014.

[^7]: ${ }^{\text {a }}$ Hartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns (1965).

[^8]: ${ }^{\text {a }}$ The first symbol is always D.
 ${ }^{\mathrm{b}} \mathrm{An}$ alternative is to use ($q, \triangleright w_{1}^{\prime} u_{1},{ }^{\prime} \triangleleft w_{2}^{\prime},{ }^{\prime} u_{2} \triangleleft \cdots \triangleleft w_{k}^{\prime},{ }^{\prime} u_{k} \triangleleft \triangleleft$) by priming only \triangleright in w_{i}, where ",'" is a new symbol.

[^9]: ${ }^{\text {a }}$ Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
 ${ }^{\mathrm{b}}$ Thanks to a lively discussion on September 22, 2009.

[^10]: ${ }^{\text {a }}$ Added after the class discussion on September 20, 2011.

[^11]: ${ }^{\text {a }}$ Recall the TM program on p .27.

[^12]: ${ }^{\text {a }}$ Because whatever appears on the string of M^{\prime} will be considered the output. So those ∇^{\prime} s and $\triangleright^{\prime \prime}$ s need to be removed.

[^13]: ${ }^{\text {a }}$ We tacitly assume $f(n) \geq n$.

[^14]: ${ }^{\mathrm{a}} m^{k} \cdot|\Sigma|^{3 m k}$-fold increase to gain a speedup of $O(m)$. No free lunch.
 ${ }^{\mathrm{b}}$ Can you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.

