Theory of Computation Lecture Notes

Prof. Yuh-Dauh Lyuu
Dept. Computer Science \& Information Engineering and
Department of Finance
National Taiwan University

Class Information

- Papadimitriou. Computational Complexity. 2nd printing. Addison-Wesley. 1995.
- We more or less follow the topics of the book.
- Extra materials may be added.
- You may want to review discrete mathematics.

Class Information (concluded)

- More information and lecture notes can be found at www.csie.ntu.edu.tw/~lyuu/complexity.html
- Homeworks, exams, solutions and teaching assistants will be announced there.
- Please ask many questions in class.
- This is the best way for me to remember you in a large class. ${ }^{\text {a }}$
a" $[\mathrm{A}]$ science concentrator [...] said that in his eighth semester of [Harvard] college, there was not a single science professor who could identify him by name." (New York Times, September 3, 2003.)

Grading

- Homeworks.
- Do not copy others' homeworks.
- Do not give your homeworks for others to copy.
- Two to three exams.
- You must show up for the exams in person.
- If you cannot make it to an exam for a legitimate reason, please email me or a TA beforehand to the extent possible.
- Missing the final exam will automatically earn a "fail" grade.

Problems and Algorithms

What This Course Is All About

Computation: What is computation?
Computability: What can be computed?

- There are well-defined problems that cannot be computed.
- In fact, most problems cannot be computed.

What This Course Is All About (continued)

Complexity: What is a computable problem's inherent complexity?

- Some computable problems require at least exponential time and/or space.
- They are said to be intractable.
- Some practical problems require superpolynomial ${ }^{\text {a }}$ resources unless certain conjectures are disproved.
- Resources besides time and space: Circuit size, circuit layout area, program size, number of random bits, etc.

[^0]
What This Course Is All About (concluded)

Applications: Intractability results can be very useful.

- Cryptography and security.
- Approximations.
- Conjectures about nature.

Tractability and Intractability

- Tractability means polynomial in terms of the input size n.
$-n, n \log n, n^{2}, n^{90}$.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Superpolynomial-time algorithms are seldom practical.

$$
-n^{\log n}, 2^{\sqrt{n}}, 2^{n}, n!\sim \sqrt{2 \pi n}(n / e)^{n} .
$$

[^1]
Exponential Growth of E. Colia

- Under ideal conditions, E. Coli bacteria divide every 20 minutes.
- In two days, a single E. Coli bacterium would become 2^{144} bacteria.
- They would weigh 2,664 times the Earth!

[^2]| Growth of Factorials | | | |
| :---: | :---: | :---: | :---: |
| $\qquad$$n$ $n!$ n $n!$
 1 1 9 362,880
 2 2 10 $3,628,800$
 3 6 11 $39,916,800$
 4 24 12 $479,001,600$
 5 120 13 $6,227,020,800$
 6 720 14 $87,178,291,200$
 7 5040 15 $1,307,674,368,000$
 8 40320 16 $20,922,789,888,000$ | | | |

Moore's Law ${ }^{\text {a }}$ to the Rescue? ${ }^{\text {b }}$

- Moore's law says the computing power doubles every 1.5 years.
- So the computing power grows like

$$
4^{y / 3},
$$

where y is the number of years from now.

- Assume Moore's law holds forever.
- Can you let the law take care of exponential complexity?

[^3]
Moore's Law to the Rescue (continued)?

- Suppose a problem takes a^{n} seconds of CPU time to solve now, where n is the input length.
- The same problem will take

$$
\frac{a^{n}}{4^{y / 3}}
$$

seconds to solve y years from now.

- In particular, the hardware $3 n \log _{4} a$ years from now takes 1 second to solve it.
- The overall complexity becomes linear in n !

Moore's Law to the Rescue (concluded)?

- Potential objections:
- Moore's law may not hold forever.
- The total number of operations is the same; so the algorithm remains exponential in complexity. ${ }^{\text {a }}$
- What is a "good" theory on computational complexity?
${ }^{\text {a }}$ Contributed by Mr. Hung-Jr Shiu (D00921020) on September 14, 2011.

Turing Machines

Tarski has stressed in his lecture (and I think justly) the great importance of the concept of general recursiveness (or Turing's computability).
— Kurt Gödel (1946)

What Is Computation?

- That can be coded in an algorithm. ${ }^{\text {a }}$
- An algorithm is a detailed step-by-step method for solving a problem.
- The Euclidean algorithm for the greatest common divisor is an algorithm.
- "Let s be the least upper bound of compact set A " is not an algorithm.
- "Let s be a smallest element of a finite-sized array" can be solved by an algorithm.

[^4]
Turing Machines ${ }^{\text {a }}$

- A Turing machine (TM) is a quadruple $M=(K, \Sigma, \delta, s)$.
- K is a finite set of states. ${ }^{\text {b }}$
- $s \in K$ is the initial state.
- Σ is a finite set of symbols (disjoint from K).
$-\Sigma$ includes \bigsqcup (blank) and \triangleright (first symbol).
- $\delta: K \times \Sigma \rightarrow(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ is a transition function.
$-\leftarrow$ (left) \rightarrow (right), and - (stay) signify cursor movements.

[^5]
A TM Schema

More about δ

- The program has the halting state (h), the accepting state ("yes"), and the rejecting state ("no").
- Given current state $q \in K$ and current symbol $\sigma \in \Sigma$,

$$
\delta(q, \sigma)=(p, \rho, D)
$$

- It specifies:
* The next state p;
* The symbol ρ to be written over σ;
* The direction D the cursor will move afterwards.
- Assume $\delta(q, \triangleright)=(p, \triangleright, \rightarrow)$.
- So the cursor never falls off the left end of the string.

More about δ (concluded)

- Think of the program as lines of codes:

$$
\begin{aligned}
\delta\left(q_{1}, \sigma_{1}\right) & =\left(p_{1}, \rho_{1}, D_{1}\right) \\
\delta\left(q_{2}, \sigma_{2}\right) & =\left(p_{2}, \rho_{2}, D_{2}\right) \\
& \vdots \\
\delta\left(q_{n}, \sigma_{n}\right) & =\left(p_{n}, \rho_{n}, D_{n}\right) .
\end{aligned}
$$

- Assume the state is q and the symbol under the cursor σ.
- The line of code that matches (q, σ) is executed. ${ }^{\text {a }}$
- Then the process is repeated.

[^6]
The Operations of TMs

- Initially the state is s.
- The string on the tape is initialized to a \triangleright, followed by a finite-length string $x \in(\Sigma-\{\bigsqcup\})^{*}$.
- x is the input of the TM.
- The input must not contain $\bigsqcup \mathrm{s}$ (why?)!
- The cursor is pointing to the first symbol, always a \triangleright.
- The TM takes each step according to δ.
- The cursor may overwrite \bigsqcup to make the string longer during the computation.

"Physical" Interpretations

- The tape: computer memory and registers.
- Except that the tape can be lengthened on demand.
- δ : program.
- A program has a finite size.
- K : instruction numbers.
- s : "main()" in the C programming language.
- Σ : alphabet, much like the ASCII code.

The Halting of a TM

- A TM M may halt in three cases.
"yes": M accepts its input x, and $M(x)=$ "yes".
"no": M rejects its input x, and $M(x)=$ "no".
$h: M(x)=y$ means the string (tape) consists of a \triangleright, followed by a finite string y, whose last symbol is not \bigsqcup, followed by a string of $\bigsqcup \mathrm{s}$.
$-y$ is the output of the computation.
$-y$ may be empty denoted by ϵ.
- If M never halts on x, then write $M(x)=\nearrow$.

The First TM Program ${ }^{\text {a }}$

- Assume $M=(K, \Sigma, \delta, s)$, where $K=\{s, h\}$, $\Sigma=\{0,1, \sqcup, \triangleright\}$, and

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	1	$(s, 0, \rightarrow)$
s	0	$(s, 1, \rightarrow)$
s	\sqcup	$(h, \sqcup,-)$

- This TM converts all 1's in the input string to 0's and vice versa.
${ }^{\text {a Contributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on Septem- }}$ ber 21, 2013.

The Second TM Program ${ }^{\text {a }}$

- Assume $M=(K, \Sigma, \delta, s)$, where $K=\left\{s, s_{1}, h\right\}$, $\Sigma=\{0,1, \sqcup, \triangleright\}$, and
${ }^{\text {a }}$ Contributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on September 21, 2013.

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	1	$\left(s_{1}, 1, \rightarrow\right)$
s	0	$(s, 0, \rightarrow)$
s_{1}	0	$(s, 0, \rightarrow)$
s_{1}	1	$(h, 1,-)$
s	\sqcup	$(h, \sqcup,-)$
s_{1}	\sqcup	$(h, \sqcup,-)$

The Second TM Program (concluded)

- This TM scans to the right until it finds two consecutive 1's and then halts.
- Otherwise, it halts at the end of the input string.

The Third TM Program

- Assume $M=(K, \Sigma, \delta, s)$, where $K=\left\{s, s_{1}\right.$, "yes", "no" $\}$, $\Sigma=\{0,1, \sqcup, \triangleright\}$, and

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	1	$\left(s_{1}, 1, \rightarrow\right)$
s	0	$(s, 0, \rightarrow)$
s_{1}	0	$(s, 0, \rightarrow)$
s_{1}	1	("yes", $1,-)$
s	\sqcup	("no", $\sqcup,-)$
s_{1}	\sqcup	("no",,--$)$

The Third TM Program (concluded)

- This TM accepts the input if there are two consecutive 1's.
- Otherwise, it rejects the input string.

Why Turing Machines?

- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
- One can conceivably develop a complexity theory based on something similar to C, C++ or Java.
- But the added complexity does not yield additional fundamental insights.
- We will describe TMs in pseudocode only. ${ }^{\text {a }}$
${ }^{\text {a }}$ But students are strongly encouraged to read and understand the TM codes in the textbook to gain insight on this programming language.

Remarks

- A computation model should be "physically" realizable.
- E.g., our brain, at least as powerful as a Turing machine, is physical.
- Although a TM requires a tape of potentially infinite length, which is not realizable, it is not a major conceptual issue. ${ }^{\text {a }}$
- Imagine you ("the program") are living next to a paper mill while carrying out a TM code using pencil ("the cursor") and paper ("the tape").
- The mill will produce extra paper if needed.

[^7]
Remarks (concluded)

- Even our computer is only an approximation of a TM for the same reason.
- But it is easy to imagine our computer with more and more address space, memory space, and disk space.

The Concept of Configuration

- A configuration ${ }^{\text {a }}$ is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
- What does your PC save before it sleeps?
- Enough for it to resume work later.
- Similar to the concept of state in Markov process.
${ }^{\text {a }}$ This term was due to Turing (1936).

Configurations (concluded)

- A configuration is a triple (q, w, u) :
$-q \in K$.
$-w \in \Sigma^{*}$ is the string to the left of the cursor (inclusive).
$-u \in \Sigma^{*}$ is the string to the right of the cursor.
- Note that (w, u) describes both the string and the cursor position.

Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ in one step,

$$
(q, w, u) \xrightarrow{M}\left(q^{\prime}, w^{\prime}, u^{\prime}\right),
$$

if a step of M from configuration (q, w, u) results in configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.

- $(q, w, u) \xrightarrow{M^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$: Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ after $k \in \mathbb{N}$ steps.
- $(q, w, u) \xrightarrow{M^{*}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$: Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.

Alan Turing (1912-1954)

Richard Dawkins (2006),
"Turing arguably made
a greater contribution to defeating the Nazis than Eisenhower or Churchill."

A TM Program To Insert a Symbol

- We want to compute $f(x)=a x$.
- The TM moves its cursor to the last symbol.
- It moves the last symbol of x to the right by one position.
- It moves the next to last symbol to the right, and so on.
- The TM finally writes a in the first position.
- The total number of steps is $O(n)$, where n is the length of x.

Palindromes

- A string is a palindrome if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes:
- It matches the first character with the last character. ${ }^{\text {a }}$
- It matches the second character with the next to last character, etc. (see next page).
- "yes" for palindromes and "no" for nonpalindromes.
- This program takes $O\left(n^{2}\right)$ steps.
- Can we do better?

[^8]

A Matching Lower Bound for Palindrome

Theorem 1 (Hennie (1965)) palindrome on
single-string TMs takes $\Omega\left(n^{2}\right)$ steps in the worst case.

The Proof: Setup

The Proof: Communications

- $\mathrm{P}(x, y)=$ "yes" if and only if $x=y$.
- Our input is more restricted; hence any lower bound holds for the original problem.
- Each communication between the two halves across the cut is a state from K, hence of size $O(1)$.
- $\mathrm{C}(x, y)$: the sequence of communications for palindrome problem $\mathrm{P}(x, y)$ across the cut.
- This crossing sequence is a sequence of states from K.

The Proof: Communications (concluded)

- $\mathrm{C}(x, x) \neq \mathrm{C}(y, y)$ when $x \neq y$.
- Suppose otherwise, $C(x, x)=C(y, y)$.
- Then $C(x, y)=C(y, y)$ by the cut-and-paste argument (see next page).
- Hence $\mathrm{P}(x, y)$ has the same answer as $\mathrm{P}(y, y)$!
- So $\mathrm{C}(x, x)$ is distinct for each x.

The Proof: Amount of Communications

- Assume $|x|=|y|=m=n / 3$.
- $|\mathrm{C}(x, x)|$ is the number of times the cut is crossed.
- We first seek a lower bound on the total number of communications for n-bit palindromes:

$$
\sum_{x \in\{0,1\}^{m}}|\mathrm{C}(x, x)| .
$$

- As $\mathrm{C}(x, x)$ is distinct for each x (p. 46), there are 2^{m} distinct $\mathrm{C}(x, x) \mathrm{s}$.
- Define

$$
\kappa \equiv(m+1) \log _{|K|} 2-\log _{|K|} m-1+\log _{|K|}(|K|-1) .
$$

The Proof: Amount of Communications (continued)

- There are $\leq|K|^{i}$ distinct $\mathrm{C}(x, x) \mathrm{s}$ with $|\mathrm{C}(x, x)|=i$.
- Hence there are at most

$$
\sum_{i=0}^{\kappa}|K|^{i}=\frac{|K|^{\kappa+1}-1}{|K|-1} \leq \frac{|K|^{\kappa+1}}{|K|-1}=\frac{2^{m+1}}{m}
$$

distinct $\mathrm{C}(x, x) \mathrm{s}$ with $|\mathrm{C}(x, x)| \leq \kappa$.

- The rest must have $|\mathrm{C}(x, x)|>\kappa$.
- So at least $2^{m}-\frac{2^{m+1}}{m} \mathrm{C}(x, x) \mathrm{s}$ have $|\mathrm{C}(x, x)|>\kappa$.

The Proof: Amount of Communications (concluded)

- Thus

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{m}}|\mathrm{C}(x, x)| & \geq \sum_{x \in\{0,1\}^{m},|\mathrm{C}(x, x)|>\kappa}|\mathrm{C}(x, x)| \\
& >\left(2^{m}-\frac{2^{m+1}}{m}\right) \kappa \\
& =\kappa 2^{m} \frac{m-2}{m}
\end{aligned}
$$

- As $\kappa=\Theta(m)$, the total number of communications is

$$
\begin{equation*}
\sum_{x \in\{0,1\}^{m}}|\mathrm{C}(x, x)|=\Omega\left(m 2^{m}\right) \tag{1}
\end{equation*}
$$

The Proof (continued)

We now lower-bound the worst-case number of communication points in the middle section.

The Proof (continued)

- $\mathrm{C}_{i}(x, x)$ denotes the sequence of communications for $\mathrm{P}(x, x)$ given the cut at position i.
- Then $\sum_{i=1}^{m}\left|\mathrm{C}_{i}(x, x)\right|$ is the number of steps spent in the middle section for $\mathrm{P}(x, x)$.
- Let $T(n)=\max _{x \in\{0,1\}^{m}} \sum_{i=1}^{m}\left|\mathrm{C}_{i}(x, x)\right|$.
- $T(n)$ is the worst-case running time spent in the middle section when dealing with any $\mathrm{P}(x, x)$ with $|x|=m$.
- Note that $T(n) \geq \sum_{i=1}^{m}\left|\mathrm{C}_{i}(x, x)\right|$ for any $x \in\{0,1\}^{m}$.

The Proof (continued)

- Now,

$$
\begin{aligned}
& 2^{2^{m}} T(n) \\
= & \sum_{x \in\{0,1\}^{m}} T(n) \\
\geq & \sum_{x \in\{0,1\}^{m}} \sum_{i=1}^{m}\left|\mathrm{C}_{i}(x, x)\right| \\
= & \sum_{i=1}^{m} \sum_{x \in\{0,1\}^{m}}\left|\mathrm{C}_{i}(x, x)\right| .
\end{aligned}
$$

The Proof (concluded)

- By the pigeonhole principle, ${ }^{\text {a }}$ there exists an $1 \leq i^{*} \leq m$,

$$
\sum_{x \in\{0,1\}^{m}}\left|\mathrm{C}_{i^{*}}(x, x)\right| \leq \frac{2^{m} T(n)}{m} .
$$

- Eq. (1) on p. 50 says that

$$
\sum_{x \in\{0,1\}^{m}}\left|\mathrm{C}_{i^{*}}(x, x)\right|=\Omega\left(m 2^{m}\right) .
$$

- Hence

$$
T(n)=\Omega\left(m^{2}\right)=\Omega\left(n^{2}\right) .
$$

[^9]
Comments on Lower-Bound Proofs

- They are usually difficult.
- Worthy of a Ph.D. degree.
- An algorithm whose running time matches a lower bound means it is optimal.
- The simple $O\left(n^{2}\right)$ algorithm for PALINDROME is optimal.
- This happens rarely and is model dependent.
- Searching, sorting, PALINDROME, matrix-vector multiplication, etc.

[^0]: aThe prefix "super" means "above, beyond."

[^1]: ${ }^{\text {a }}$ Size of depth-3 circuits to compute the majority function (Wolfovitz (2006)) and certain stochastic models used in finance (Dai (R86526008, D8852600) and Lyuu (2007), Lyuu and Wang (F95922018) (2011), and Chiu (R98723059) (2012)).

[^2]: ${ }^{\text {a }}$ Nick Lane, Power, Sex, Suicide: Mitochondria and the Meaning of Life (2005).

[^3]: ${ }^{\text {a }}$ Moore (1965).
 ${ }^{\text {b }}$ Contributed by Ms. Amy Liu (J94922016) on May 15, 2006. Thanks also to a lively discussion on September 14, 2010.

[^4]: ${ }^{a}$ Muhammad ibn Mūsā Al-Khwārizmi (780-850).

[^5]: ${ }^{\text {a }}$ Turing (1936).
 ${ }^{\text {b }}$ Turing (1936), "If we admitted an infinity of states of mind, some of them will be 'arbitrarily close' and will be confused."

[^6]: ${ }^{\text {a }}$ So there should be one and only one instruction for every possible pair (q, σ). Contributed by Mr. Ya-Hsun Chang (B96902025, R00922044) on September 13, 2011.

[^7]: ${ }^{\text {a }}$ Thanks to a lively discussion on September 20, 2006.

[^8]: abryson (2001), "Possibly the most demanding form of wordplay in English[.]"

[^9]: ${ }^{\text {a }}$ Dirichlet (1805-1859).

