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Class Information

• Papadimitriou. Computational Complexity. 2nd

printing. Addison-Wesley. 1995.

– We more or less follow the topics of the book.

– Extra materials may be added.

• You may want to review discrete mathematics.
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Class Information (concluded)

• More information and lecture notes can be found at

www.csie.ntu.edu.tw/~lyuu/complexity.html

– Homeworks, exams, solutions and teaching assistants

will be announced there.

• Please ask many questions in class.

– This is the best way for me to remember you in a

large class.a

a“[A] science concentrator [...] said that in his eighth semester of

[Harvard] college, there was not a single science professor who could

identify him by name.” (New York Times, September 3, 2003.)
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Grading

• Homeworks.

– Do not copy others’ homeworks.

– Do not give your homeworks for others to copy.

• Two to three exams.

• You must show up for the exams in person.

• If you cannot make it to an exam for a legitimate

reason, please email me or a TA beforehand to the

extent possible.

• Missing the final exam will automatically earn a “fail”

grade.
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Problems and Algorithms
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I have never done anything “useful.”

— Godfrey Harold Hardy (1877–1947),

A Mathematician’s Apology (1940)
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What This Course Is All About

Computation: What is computation?

Computability: What can be computed?

• There are well-defined problems that cannot be

computed.

• In fact, most problems cannot be computed.
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What This Course Is All About (continued)

Complexity: What is a computable problem’s inherent

complexity?

• Some computable problems require at least

exponential time and/or space.

– They are said to be intractable.

• Some practical problems require superpolynomiala

resources unless certain conjectures are disproved.

• Resources besides time and space: Circuit size,

circuit layout area, program size, number of random

bits, etc.

aThe prefix “super” means “above, beyond.”
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What This Course Is All About (concluded)

Applications: Intractability results can be very useful.

• Cryptography and security.

• Approximations.

• Conjectures about nature.
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Tractability and Intractability

• Tractability means polynomial in terms of the input size

n.

– n, n log n, n2, n90.

• It results in a fruitful and practical theory of complexity.

• Few practical, tractable problems require a large degree.

• Superpolynomial-time algorithms are seldom practical.

– nlogn, 2
√
n,a 2n, n! ∼

√
2πn (n/e)n.

aSize of depth-3 circuits to compute the majority function (Wolfovitz

(2006)) and certain stochastic models used in finance (Dai (R86526008,

D8852600) and Lyuu (2007), Lyuu and Wang (F95922018) (2011), and

Chiu (R98723059) (2012)).
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Exponential Growth of E. Colia

• Under ideal conditions, E. Coli bacteria divide every 20

minutes.

• In two days, a single E. Coli bacterium would become

2144 bacteria.

• They would weigh 2,664 times the Earth!

aNick Lane, Power, Sex, Suicide: Mitochondria and the Meaning of

Life (2005).
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Growth of Factorials

n n! n n!

1 1 9 362,880

2 2 10 3,628,800

3 6 11 39,916,800

4 24 12 479,001,600

5 120 13 6,227,020,800

6 720 14 87,178,291,200

7 5040 15 1,307,674,368,000

8 40320 16 20,922,789,888,000
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Moore’s Lawa to the Rescue?b

• Moore’s law says the computing power doubles every 1.5

years.

• So the computing power grows like

4y/3,

where y is the number of years from now.

• Assume Moore’s law holds forever.

• Can you let the law take care of exponential complexity?

aMoore (1965).
bContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Thanks

also to a lively discussion on September 14, 2010.
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Moore’s Law to the Rescue (continued)?

• Suppose a problem takes an seconds of CPU time to

solve now, where n is the input length.

• The same problem will take

an

4y/3

seconds to solve y years from now.

• In particular, the hardware 3n log4 a years from now

takes 1 second to solve it.

• The overall complexity becomes linear in n!
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Moore’s Law to the Rescue (concluded)?

• Potential objections:

– Moore’s law may not hold forever.

– The total number of operations is the same; so the

algorithm remains exponential in complexity.a

• What is a “good” theory on computational complexity?

aContributed by Mr. Hung-Jr Shiu (D00921020) on September 14,

2011.
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Turing Machines
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Tarski has stressed in his lecture

(and I think justly)

the great importance of

the concept of general recursiveness

(or Turing’s computability).

— Kurt Gödel (1946)
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What Is Computation?

• That can be coded in an algorithm.a

• An algorithm is a detailed step-by-step method for

solving a problem.

– The Euclidean algorithm for the greatest common

divisor is an algorithm.

– “Let s be the least upper bound of compact set A” is

not an algorithm.

– “Let s be a smallest element of a finite-sized array”

can be solved by an algorithm.

aMuhammad ibn Mūsā Al-Khwārizmī (780–850).
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Turing Machinesa

• A Turing machine (TM) is a quadruple M = (K,Σ, δ, s).

• K is a finite set of states.b

• s ∈ K is the initial state.

• Σ is a finite set of symbols (disjoint from K).

– Σ includes
⊔

(blank) and � (first symbol).

• δ : K ×Σ→ (K ∪ {h, “yes”, “no”})×Σ× {←,→,−} is a
transition function.

– ← (left), → (right), and − (stay) signify cursor

movements.
aTuring (1936).
bTuring (1936), “If we admitted an infinity of states of mind, some of

them will be ‘arbitrarily close’ and will be confused.”
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A TM Schema

δ

#1000110000111001110001110���
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More about δ

• The program has the halting state (h), the accepting

state (“yes”), and the rejecting state (“no”).

• Given current state q ∈ K and current symbol σ ∈ Σ,

δ(q, σ) = (p, ρ,D).

– It specifies:

∗ The next state p;

∗ The symbol ρ to be written over σ;

∗ The direction D the cursor will move afterwards.

• Assume δ(q,�) = (p,�,→).

– So the cursor never falls off the left end of the string.
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More about δ (concluded)

• Think of the program as lines of codes:

δ(q1, σ1) = (p1, ρ1, D1),

δ(q2, σ2) = (p2, ρ2, D2),

...

δ(qn, σn) = (pn, ρn, Dn).

• Assume the state is q and the symbol under the cursor σ.

• The line of code that matches (q, σ) is executed.a

• Then the process is repeated.
aSo there should be one and only one instruction for every possible

pair (q, σ). Contributed by Mr. Ya-Hsun Chang (B96902025, R00922044)

on September 13, 2011.
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The Operations of TMs

• Initially the state is s.

• The string on the tape is initialized to a �, followed by a

finite-length string x ∈ (Σ− {
⊔
})∗.

• x is the input of the TM.

– The input must not contain
⊔
s (why?)!

• The cursor is pointing to the first symbol, always a �.

• The TM takes each step according to δ.

• The cursor may overwrite
⊔

to make the string longer

during the computation.
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“Physical” Interpretations

• The tape: computer memory and registers.

– Except that the tape can be lengthened on demand.

• δ: program.

– A program has a finite size.

• K: instruction numbers.

• s: “main()” in the C programming language.

• Σ: alphabet, much like the ASCII code.
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The Halting of a TM

• A TM M may halt in three cases.

“yes”: M accepts its input x, and M(x) = “yes”.

“no”: M rejects its input x, and M(x) = “no”.

h: M(x) = y means the string (tape) consists of a �,

followed by a finite string y, whose last symbol is not⊔
, followed by a string of

⊔
s.

– y is the output of the computation.

– y may be empty denoted by ϵ.

• If M never halts on x, then write M(x) =↗.
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The First TM Programa

• Assume M = (K,Σ, δ, s), where K = {s, h},
Σ = { 0, 1,⊔, ▷ }, and

p ∈ K σ ∈ Σ δ(p, σ)

s ▷ (s, ▷,→)

s 1 (s, 0,→)

s 0 (s, 1,→)

s ⊔ (h,⊔,−)

• This TM converts all 1’s in the input string to 0’s and

vice versa.

aContributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on Septem-

ber 21, 2013.
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The Second TM Programa

• Assume M = (K,Σ, δ, s), where K = {s, s1, h},
Σ = { 0, 1,⊔, ▷ }, and

aContributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on Septem-

ber 21, 2013.
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p ∈ K σ ∈ Σ δ(p, σ)

s ▷ (s, ▷,→)

s 1 (s1, 1,→)

s 0 (s, 0,→)

s1 0 (s, 0,→)

s1 1 (h, 1,−)

s ⊔ (h,⊔,−)

s1 ⊔ (h,⊔,−)
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The Second TM Program (concluded)

• This TM scans to the right until it finds two consecutive

1’s and then halts.

• Otherwise, it halts at the end of the input string.
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The Third TM Program

• Assume M = (K,Σ, δ, s), where K = {s, s1, “yes”, “no”},
Σ = { 0, 1,⊔, ▷ }, and

p ∈ K σ ∈ Σ δ(p, σ)

s ▷ (s, ▷,→)

s 1 (s1, 1,→)

s 0 (s, 0,→)

s1 0 (s, 0,→)

s1 1 (“yes”, 1,−)

s ⊔ (“no”,⊔,−)

s1 ⊔ (“no”,⊔,−)
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The Third TM Program (concluded)

• This TM accepts the input if there are two consecutive

1’s.

• Otherwise, it rejects the input string.
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Why Turing Machines?

• Because of the simplicity of the TM, the model has the

advantage when it comes to complexity issues.

• One can conceivably develop a complexity theory based

on something similar to C, C++ or Java.

• But the added complexity does not yield additional

fundamental insights.

• We will describe TMs in pseudocode only.a

aBut students are strongly encouraged to read and understand the

TM codes in the textbook to gain insight on this programming language.
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Remarks

• A computation model should be “physically” realizable.

– E.g., our brain, at least as powerful as a Turing

machine, is physical.

• Although a TM requires a tape of potentially infinite

length, which is not realizable, it is not a major

conceptual issue.a

– Imagine you (“the program”) are living next to a

paper mill while carrying out a TM code using pencil

(“the cursor”) and paper (“the tape”).

– The mill will produce extra paper if needed.

aThanks to a lively discussion on September 20, 2006.
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Remarks (concluded)

• Even our computer is only an approximation of a TM

for the same reason.

– But it is easy to imagine our computer with more and

more address space, memory space, and disk space.
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The Concept of Configuration

• A configurationa is a complete description of the

current state of the computation.

• The specification of a configuration is sufficient for the

computation to continue as if it had not been stopped.

– What does your PC save before it sleeps?

– Enough for it to resume work later.

• Similar to the concept of state in Markov process.

aThis term was due to Turing (1936).
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Configurations (concluded)

• A configuration is a triple (q, w, u):

– q ∈ K.

– w ∈ Σ∗ is the string to the left of the cursor

(inclusive).

– u ∈ Σ∗ is the string to the right of the cursor.

• Note that (w, u) describes both the string and the cursor

position.
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T

#1000110000111001110001110���

• w = �1000110000.

• u = 111001110001110.
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Yielding

• Fix a TM M .

• Configuration (q, w, u) yields configuration (q′, w′, u′) in one

step,

(q, w, u)
M−→ (q′, w′, u′),

if a step of M from configuration (q, w, u) results in

configuration (q′, w′, u′).

• (q, w, u)
Mk

−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′) after k ∈ N steps.

• (q, w, u)
M∗
−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′).
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Alan Turing (1912–1954)

Richard Dawkins (2006),

“Turing arguably made

a greater contribution to

defeating the Nazis than

Eisenhower or Churchill.”
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A TM Program To Insert a Symbol

• We want to compute f(x) = ax.

– The TM moves its cursor to the last symbol.

– It moves the last symbol of x to the right by one

position.

– It moves the next to last symbol to the right, and so

on.

– The TM finally writes a in the first position.

• The total number of steps is O(n), where n is the length

of x.
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Palindromes

• A string is a palindrome if it reads the same forwards

and backwards (e.g., 001100).

• A TM program can be written to recognize palindromes:

– It matches the first character with the last character.a

– It matches the second character with the next to last

character, etc. (see next page).

– “yes” for palindromes and “no” for nonpalindromes.

• This program takes O(n2) steps.

• Can we do better?

aBryson (2001), “Possibly the most demanding form of wordplay in

English[.]”
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100011000000100111
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A Matching Lower Bound for palindrome

Theorem 1 (Hennie (1965)) palindrome on

single-string TMs takes Ω(n2) steps in the worst case.
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The Proof: Setup

100011000000100111


x
 y
r


Communication: at

most 
log
2
 | K |
 bits


P(
x
, 
y
)


yes/no


m


Cut
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The Proof: Communications

• P(x, y) = “yes” if and only if x = y.

• Our input is more restricted; hence any lower bound

holds for the original problem.

• Each communication between the two halves across the

cut is a state from K, hence of size O(1).

• C(x, y): the sequence of communications for palindrome

problem P(x, y) across the cut.

– This crossing sequence is a sequence of states from K.
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The Proof: Communications (concluded)

• C(x, x) ̸= C(y, y) when x ̸= y.

– Suppose otherwise, C(x, x) = C(y, y).

– Then C(x, y) = C(y, y) by the cut-and-paste

argument (see next page).

– Hence P(x, y) has the same answer as P(y, y)!

• So C(x, x) is distinct for each x.
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x
 x
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 y
 y
r
 x
 y
r


b
b
b


c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 47



The Proof: Amount of Communications

• Assume |x | = | y | = m = n/3.

• |C(x, x) | is the number of times the cut is crossed.

• We first seek a lower bound on the total number of

communications for n-bit palindromes:∑
x∈{0,1}m

|C(x, x) |.

• As C(x, x) is distinct for each x (p. 46), there are 2m

distinct C(x, x)s.

• Define

κ ≡ (m+ 1) log|K | 2− log|K | m− 1 + log|K |(|K | − 1).
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The Proof: Amount of Communications (continued)

• There are ≤ |K |i distinct C(x, x)s with |C(x, x) | = i.

• Hence there are at most

κ∑
i=0

|K |i = |K |
κ+1 − 1

|K | − 1
≤ |K |

κ+1

|K | − 1
=

2m+1

m

distinct C(x, x)s with |C(x, x) | ≤ κ.

• The rest must have |C(x, x) | > κ.

• So at least 2m − 2m+1

m C(x, x)s have |C(x, x) | > κ.
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The Proof: Amount of Communications (concluded)

• Thus∑
x∈{0,1}m

|C(x, x) | ≥
∑

x∈{0,1}m,|C(x,x) |>κ

|C(x, x) |

>

(
2m − 2m+1

m

)
κ

= κ2m
m− 2

m
.

• As κ = Θ(m), the total number of communications is∑
x∈{0,1}m

|C(x, x) | = Ω(m2m). (1)
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The Proof (continued)

We now lower-bound the worst-case number of

communication points in the middle section.

x
 x
r
i


m


yes/no
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The Proof (continued)

• Ci(x, x) denotes the sequence of communications for

P(x, x) given the cut at position i.

• Then
∑m

i=1 |Ci(x, x) | is the number of steps spent in

the middle section for P(x, x).

• Let T (n) = maxx∈{0,1}m

∑m
i=1 |Ci(x, x) |.

– T (n) is the worst-case running time spent in the

middle section when dealing with any P(x, x) with

|x | = m.

• Note that T (n) ≥
∑m

i=1 |Ci(x, x) | for any x ∈ {0, 1}m.
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The Proof (continued)

• Now,

2mT (n)

=
∑

x∈{0,1}m

T (n)

≥
∑

x∈{0,1}m

m∑
i=1

|Ci(x, x) |

=
m∑
i=1

∑
x∈{0,1}m

|Ci(x, x) |.
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The Proof (concluded)

• By the pigeonhole principle,a there exists an 1 ≤ i∗ ≤ m,∑
x∈{0,1}m

|Ci∗(x, x) | ≤
2mT (n)

m
.

• Eq. (1) on p. 50 says that∑
x∈{0,1}m

|Ci∗(x, x) | = Ω(m2m).

• Hence

T (n) = Ω(m2) = Ω(n2).

aDirichlet (1805–1859).
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Comments on Lower-Bound Proofs

• They are usually difficult.

– Worthy of a Ph.D. degree.

• An algorithm whose running time matches a lower

bound means it is optimal.

– The simple O(n2) algorithm for palindrome is

optimal.

• This happens rarely and is model dependent.

– Searching, sorting, palindrome, matrix-vector

multiplication, etc.
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