
Theory of Computation Lecture
Notes

Prof. Yuh-Dauh Lyuu

Dept. Computer Science & Information Engineering

and

Department of Finance

National Taiwan University

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1

Class Information

• Papadimitriou. Computational Complexity. 2nd

printing. Addison-Wesley. 1995.

– We more or less follow the topics of the book.

– Extra materials may be added.

• You may want to review discrete mathematics.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 2

Class Information (concluded)

• More information and lecture notes can be found at

www.csie.ntu.edu.tw/~lyuu/complexity.html

– Homeworks, exams, solutions and teaching assistants

will be announced there.

• Please ask many questions in class.

– This is the best way for me to remember you in a

large class.a

a“[A] science concentrator [...] said that in his eighth semester of

[Harvard] college, there was not a single science professor who could

identify him by name.” (New York Times, September 3, 2003.)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 3

Grading

• Homeworks.

– Do not copy others’ homeworks.

– Do not give your homeworks for others to copy.

• Two to three exams.

• You must show up for the exams in person.

• If you cannot make it to an exam for a legitimate

reason, please email me or a TA beforehand to the

extent possible.

• Missing the final exam will automatically earn a “fail”

grade.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 4

Problems and Algorithms

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 5

I have never done anything “useful.”

— Godfrey Harold Hardy (1877–1947),

A Mathematician’s Apology (1940)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 6

What This Course Is All About

Computation: What is computation?

Computability: What can be computed?

• There are well-defined problems that cannot be

computed.

• In fact, most problems cannot be computed.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 7

What This Course Is All About (continued)

Complexity: What is a computable problem’s inherent

complexity?

• Some computable problems require at least

exponential time and/or space.

– They are said to be intractable.

• Some practical problems require superpolynomiala

resources unless certain conjectures are disproved.

• Resources besides time and space: Circuit size,

circuit layout area, program size, number of random

bits, etc.

aThe prefix “super” means “above, beyond.”

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 8

What This Course Is All About (concluded)

Applications: Intractability results can be very useful.

• Cryptography and security.

• Approximations.

• Conjectures about nature.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 9

Tractability and Intractability

• Tractability means polynomial in terms of the input size

n.

– n, n log n, n2, n90.

• It results in a fruitful and practical theory of complexity.

• Few practical, tractable problems require a large degree.

• Superpolynomial-time algorithms are seldom practical.

– nlogn, 2
√
n,a 2n, n! ∼

√
2πn (n/e)n.

aSize of depth-3 circuits to compute the majority function (Wolfovitz

(2006)) and certain stochastic models used in finance (Dai (R86526008,

D8852600) and Lyuu (2007), Lyuu and Wang (F95922018) (2011), and

Chiu (R98723059) (2012)).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 10

Exponential Growth of E. Colia

• Under ideal conditions, E. Coli bacteria divide every 20

minutes.

• In two days, a single E. Coli bacterium would become

2144 bacteria.

• They would weigh 2,664 times the Earth!

aNick Lane, Power, Sex, Suicide: Mitochondria and the Meaning of

Life (2005).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 11

Growth of Factorials

n n! n n!

1 1 9 362,880

2 2 10 3,628,800

3 6 11 39,916,800

4 24 12 479,001,600

5 120 13 6,227,020,800

6 720 14 87,178,291,200

7 5040 15 1,307,674,368,000

8 40320 16 20,922,789,888,000

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 12

Moore’s Lawa to the Rescue?b

• Moore’s law says the computing power doubles every 1.5

years.

• So the computing power grows like

4y/3,

where y is the number of years from now.

• Assume Moore’s law holds forever.

• Can you let the law take care of exponential complexity?

aMoore (1965).
bContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Thanks

also to a lively discussion on September 14, 2010.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 13

Moore’s Law to the Rescue (continued)?

• Suppose a problem takes an seconds of CPU time to

solve now, where n is the input length.

• The same problem will take

an

4y/3

seconds to solve y years from now.

• In particular, the hardware 3n log4 a years from now

takes 1 second to solve it.

• The overall complexity becomes linear in n!

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 14

Moore’s Law to the Rescue (concluded)?

• Potential objections:

– Moore’s law may not hold forever.

– The total number of operations is the same; so the

algorithm remains exponential in complexity.a

• What is a “good” theory on computational complexity?

aContributed by Mr. Hung-Jr Shiu (D00921020) on September 14,

2011.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 15

Turing Machines

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 16

Tarski has stressed in his lecture

(and I think justly)

the great importance of

the concept of general recursiveness

(or Turing’s computability).

— Kurt Gödel (1946)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 17

What Is Computation?

• That can be coded in an algorithm.a

• An algorithm is a detailed step-by-step method for

solving a problem.

– The Euclidean algorithm for the greatest common

divisor is an algorithm.

– “Let s be the least upper bound of compact set A” is

not an algorithm.

– “Let s be a smallest element of a finite-sized array”

can be solved by an algorithm.

aMuhammad ibn Mūsā Al-Khwārizmī (780–850).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 18

Turing Machinesa

• A Turing machine (TM) is a quadruple M = (K,Σ, δ, s).

• K is a finite set of states.b

• s ∈ K is the initial state.

• Σ is a finite set of symbols (disjoint from K).

– Σ includes
⊔

(blank) and � (first symbol).

• δ : K ×Σ→ (K ∪ {h, “yes”, “no”})×Σ× {←,→,−} is a
transition function.

– ← (left), → (right), and − (stay) signify cursor

movements.
aTuring (1936).
bTuring (1936), “If we admitted an infinity of states of mind, some of

them will be ‘arbitrarily close’ and will be confused.”

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 19

A TM Schema

δ

#1000110000111001110001110���

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 20

More about δ

• The program has the halting state (h), the accepting

state (“yes”), and the rejecting state (“no”).

• Given current state q ∈ K and current symbol σ ∈ Σ,

δ(q, σ) = (p, ρ,D).

– It specifies:

∗ The next state p;

∗ The symbol ρ to be written over σ;

∗ The direction D the cursor will move afterwards.

• Assume δ(q,�) = (p,�,→).

– So the cursor never falls off the left end of the string.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 21

More about δ (concluded)

• Think of the program as lines of codes:

δ(q1, σ1) = (p1, ρ1, D1),

δ(q2, σ2) = (p2, ρ2, D2),

...

δ(qn, σn) = (pn, ρn, Dn).

• Assume the state is q and the symbol under the cursor σ.

• The line of code that matches (q, σ) is executed.a

• Then the process is repeated.
aSo there should be one and only one instruction for every possible

pair (q, σ). Contributed by Mr. Ya-Hsun Chang (B96902025, R00922044)

on September 13, 2011.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 22

The Operations of TMs

• Initially the state is s.

• The string on the tape is initialized to a �, followed by a

finite-length string x ∈ (Σ− {
⊔
})∗.

• x is the input of the TM.

– The input must not contain
⊔
s (why?)!

• The cursor is pointing to the first symbol, always a �.

• The TM takes each step according to δ.

• The cursor may overwrite
⊔

to make the string longer

during the computation.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 23

“Physical” Interpretations

• The tape: computer memory and registers.

– Except that the tape can be lengthened on demand.

• δ: program.

– A program has a finite size.

• K: instruction numbers.

• s: “main()” in the C programming language.

• Σ: alphabet, much like the ASCII code.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 24

The Halting of a TM

• A TM M may halt in three cases.

“yes”: M accepts its input x, and M(x) = “yes”.

“no”: M rejects its input x, and M(x) = “no”.

h: M(x) = y means the string (tape) consists of a �,

followed by a finite string y, whose last symbol is not⊔
, followed by a string of

⊔
s.

– y is the output of the computation.

– y may be empty denoted by ϵ.

• If M never halts on x, then write M(x) =↗.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 25

The First TM Programa

• Assume M = (K,Σ, δ, s), where K = {s, h},
Σ = { 0, 1,⊔, ▷ }, and

p ∈ K σ ∈ Σ δ(p, σ)

s ▷ (s, ▷,→)

s 1 (s, 0,→)

s 0 (s, 1,→)

s ⊔ (h,⊔,−)

• This TM converts all 1’s in the input string to 0’s and

vice versa.

aContributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on Septem-

ber 21, 2013.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 26

The Second TM Programa

• Assume M = (K,Σ, δ, s), where K = {s, s1, h},
Σ = { 0, 1,⊔, ▷ }, and

aContributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on Septem-

ber 21, 2013.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 27

p ∈ K σ ∈ Σ δ(p, σ)

s ▷ (s, ▷,→)

s 1 (s1, 1,→)

s 0 (s, 0,→)

s1 0 (s, 0,→)

s1 1 (h, 1,−)

s ⊔ (h,⊔,−)

s1 ⊔ (h,⊔,−)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 28

The Second TM Program (concluded)

• This TM scans to the right until it finds two consecutive

1’s and then halts.

• Otherwise, it halts at the end of the input string.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 29

The Third TM Program

• Assume M = (K,Σ, δ, s), where K = {s, s1, “yes”, “no”},
Σ = { 0, 1,⊔, ▷ }, and

p ∈ K σ ∈ Σ δ(p, σ)

s ▷ (s, ▷,→)

s 1 (s1, 1,→)

s 0 (s, 0,→)

s1 0 (s, 0,→)

s1 1 (“yes”, 1,−)

s ⊔ (“no”,⊔,−)

s1 ⊔ (“no”,⊔,−)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 30

The Third TM Program (concluded)

• This TM accepts the input if there are two consecutive

1’s.

• Otherwise, it rejects the input string.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 31

Why Turing Machines?

• Because of the simplicity of the TM, the model has the

advantage when it comes to complexity issues.

• One can conceivably develop a complexity theory based

on something similar to C, C++ or Java.

• But the added complexity does not yield additional

fundamental insights.

• We will describe TMs in pseudocode only.a

aBut students are strongly encouraged to read and understand the

TM codes in the textbook to gain insight on this programming language.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 32

Remarks

• A computation model should be “physically” realizable.

– E.g., our brain, at least as powerful as a Turing

machine, is physical.

• Although a TM requires a tape of potentially infinite

length, which is not realizable, it is not a major

conceptual issue.a

– Imagine you (“the program”) are living next to a

paper mill while carrying out a TM code using pencil

(“the cursor”) and paper (“the tape”).

– The mill will produce extra paper if needed.

aThanks to a lively discussion on September 20, 2006.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 33

Remarks (concluded)

• Even our computer is only an approximation of a TM

for the same reason.

– But it is easy to imagine our computer with more and

more address space, memory space, and disk space.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 34

The Concept of Configuration

• A configurationa is a complete description of the

current state of the computation.

• The specification of a configuration is sufficient for the

computation to continue as if it had not been stopped.

– What does your PC save before it sleeps?

– Enough for it to resume work later.

• Similar to the concept of state in Markov process.

aThis term was due to Turing (1936).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 35

Configurations (concluded)

• A configuration is a triple (q, w, u):

– q ∈ K.

– w ∈ Σ∗ is the string to the left of the cursor

(inclusive).

– u ∈ Σ∗ is the string to the right of the cursor.

• Note that (w, u) describes both the string and the cursor

position.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 36

T

#1000110000111001110001110���

• w = �1000110000.

• u = 111001110001110.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 37

Yielding

• Fix a TM M .

• Configuration (q, w, u) yields configuration (q′, w′, u′) in one

step,

(q, w, u)
M−→ (q′, w′, u′),

if a step of M from configuration (q, w, u) results in

configuration (q′, w′, u′).

• (q, w, u)
Mk

−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′) after k ∈ N steps.

• (q, w, u)
M∗
−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 38

Alan Turing (1912–1954)

Richard Dawkins (2006),

“Turing arguably made

a greater contribution to

defeating the Nazis than

Eisenhower or Churchill.”

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 39

A TM Program To Insert a Symbol

• We want to compute f(x) = ax.

– The TM moves its cursor to the last symbol.

– It moves the last symbol of x to the right by one

position.

– It moves the next to last symbol to the right, and so

on.

– The TM finally writes a in the first position.

• The total number of steps is O(n), where n is the length

of x.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 40

Palindromes

• A string is a palindrome if it reads the same forwards

and backwards (e.g., 001100).

• A TM program can be written to recognize palindromes:

– It matches the first character with the last character.a

– It matches the second character with the next to last

character, etc. (see next page).

– “yes” for palindromes and “no” for nonpalindromes.

• This program takes O(n2) steps.

• Can we do better?

aBryson (2001), “Possibly the most demanding form of wordplay in

English[.]”

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 41

100011000000100111

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 42

A Matching Lower Bound for palindrome

Theorem 1 (Hennie (1965)) palindrome on

single-string TMs takes Ω(n2) steps in the worst case.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 43

The Proof: Setup

100011000000100111

x
 y
r

Communication: at

most
log
2
 | K |
 bits

P(
x
,
y
)

yes/no

m

Cut

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 44

The Proof: Communications

• P(x, y) = “yes” if and only if x = y.

• Our input is more restricted; hence any lower bound

holds for the original problem.

• Each communication between the two halves across the

cut is a state from K, hence of size O(1).

• C(x, y): the sequence of communications for palindrome

problem P(x, y) across the cut.

– This crossing sequence is a sequence of states from K.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 45

The Proof: Communications (concluded)

• C(x, x) ̸= C(y, y) when x ̸= y.

– Suppose otherwise, C(x, x) = C(y, y).

– Then C(x, y) = C(y, y) by the cut-and-paste

argument (see next page).

– Hence P(x, y) has the same answer as P(y, y)!

• So C(x, x) is distinct for each x.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 46

x
 x
r
 y
 y
r
 x
 y
r

b
b
b

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 47

The Proof: Amount of Communications

• Assume |x | = | y | = m = n/3.

• |C(x, x) | is the number of times the cut is crossed.

• We first seek a lower bound on the total number of

communications for n-bit palindromes:∑
x∈{0,1}m

|C(x, x) |.

• As C(x, x) is distinct for each x (p. 46), there are 2m

distinct C(x, x)s.

• Define

κ ≡ (m+ 1) log|K | 2− log|K | m− 1 + log|K |(|K | − 1).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 48

The Proof: Amount of Communications (continued)

• There are ≤ |K |i distinct C(x, x)s with |C(x, x) | = i.

• Hence there are at most

κ∑
i=0

|K |i = |K |
κ+1 − 1

|K | − 1
≤ |K |

κ+1

|K | − 1
=

2m+1

m

distinct C(x, x)s with |C(x, x) | ≤ κ.

• The rest must have |C(x, x) | > κ.

• So at least 2m − 2m+1

m C(x, x)s have |C(x, x) | > κ.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 49

The Proof: Amount of Communications (concluded)

• Thus∑
x∈{0,1}m

|C(x, x) | ≥
∑

x∈{0,1}m,|C(x,x) |>κ

|C(x, x) |

>

(
2m − 2m+1

m

)
κ

= κ2m
m− 2

m
.

• As κ = Θ(m), the total number of communications is∑
x∈{0,1}m

|C(x, x) | = Ω(m2m). (1)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 50

The Proof (continued)

We now lower-bound the worst-case number of

communication points in the middle section.

x
 x
r
i

m

yes/no

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 51

The Proof (continued)

• Ci(x, x) denotes the sequence of communications for

P(x, x) given the cut at position i.

• Then
∑m

i=1 |Ci(x, x) | is the number of steps spent in

the middle section for P(x, x).

• Let T (n) = maxx∈{0,1}m

∑m
i=1 |Ci(x, x) |.

– T (n) is the worst-case running time spent in the

middle section when dealing with any P(x, x) with

|x | = m.

• Note that T (n) ≥
∑m

i=1 |Ci(x, x) | for any x ∈ {0, 1}m.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 52

The Proof (continued)

• Now,

2mT (n)

=
∑

x∈{0,1}m

T (n)

≥
∑

x∈{0,1}m

m∑
i=1

|Ci(x, x) |

=
m∑
i=1

∑
x∈{0,1}m

|Ci(x, x) |.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 53

The Proof (concluded)

• By the pigeonhole principle,a there exists an 1 ≤ i∗ ≤ m,∑
x∈{0,1}m

|Ci∗(x, x) | ≤
2mT (n)

m
.

• Eq. (1) on p. 50 says that∑
x∈{0,1}m

|Ci∗(x, x) | = Ω(m2m).

• Hence

T (n) = Ω(m2) = Ω(n2).

aDirichlet (1805–1859).

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 54

Comments on Lower-Bound Proofs

• They are usually difficult.

– Worthy of a Ph.D. degree.

• An algorithm whose running time matches a lower

bound means it is optimal.

– The simple O(n2) algorithm for palindrome is

optimal.

• This happens rarely and is model dependent.

– Searching, sorting, palindrome, matrix-vector

multiplication, etc.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 55

