Theory of Computation Lecture Notes

Prof. Yuh-Dauh Lyuu Dept. Computer Science & Information Engineering and Department of Finance National Taiwan University

Class Information

- Papadimitriou. *Computational Complexity*. 2nd printing. Addison-Wesley. 1995.
 - We more or less follow the topics of the book.
 - Extra materials may be added.
- You may want to review discrete mathematics.

Class Information (concluded)

• More information and lecture notes can be found at

```
www.csie.ntu.edu.tw/~lyuu/complexity.html
```

- Homeworks, exams, solutions and teaching assistants will be announced there.
- Please ask many questions in class.
 - This is the best way for me to remember you in a large class.^a

^a "[A] science concentrator [...] said that in his eighth semester of [Harvard] college, there was not a single science professor who could identify him by name." (*New York Times*, September 3, 2003.)

Grading

- Homeworks.
 - Do not copy others' homeworks.
 - Do not give your homeworks for others to copy.
- Two to three exams.
- You must show up for the exams in person.
- If you cannot make it to an exam for a legitimate reason, please email me or a TA beforehand to the extent possible.
- Missing the final exam will automatically earn a "fail" grade.

Problems and Algorithms

I have never done anything "useful." — Godfrey Harold Hardy (1877–1947), A Mathematician's Apology (1940)

What This Course Is All About

Computation: What is computation?

Computability: What can be computed?

- There are *well-defined* problems that cannot be computed.
- In fact, most problems cannot be computed.

What This Course Is All About (continued)

Complexity: What is a computable problem's inherent complexity?

- Some computable problems require at least exponential time and/or space.
 - They are said to be **intractable**.
- Some practical problems require superpolynomial^a resources unless certain conjectures are disproved.
- Resources besides time and space: Circuit size, circuit layout area, program size, number of random bits, etc.

^aThe prefix "super" means "above, beyond."

What This Course Is All About (concluded) Applications: Intractability results can be very useful.

- Cryptography and security.
- Approximations.
- Conjectures about nature.

Tractability and Intractability

- Tractability means polynomial in terms of the input size *n*.
 - $-n, n \log n, n^2, n^{90}.$
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Superpolynomial-time algorithms are seldom practical. $- n^{\log n}, 2^{\sqrt{n}}, a 2^n, n! \sim \sqrt{2\pi n} (n/e)^n.$

^aSize of depth-3 circuits to compute the majority function (Wolfovitz (2006)) and certain stochastic models used in finance (Dai (R86526008, D8852600) and Lyuu (2007), Lyuu and Wang (F95922018) (2011), and Chiu (R98723059) (2012)).

Exponential Growth of E. Coli^a

- Under ideal conditions, *E. Coli* bacteria divide every 20 minutes.
- In two days, a single *E. Coli* bacterium would become 2^{144} bacteria.
- They would weigh 2,664 times the Earth!

^aNick Lane, Power, Sex, Suicide: Mitochondria and the Meaning of Life (2005).

Growth c	of Facto	orials
----------	----------	--------

n	n!	n	n!
1	1	9	$362,\!880$
2	2	10	$3,\!628,\!800$
3	6	11	$39,\!916,\!800$
4	24	12	479,001,600
5	120	13	$6,\!227,\!020,\!800$
6	720	14	$87,\!178,\!291,\!200$
7	5040	15	$1,\!307,\!674,\!368,\!000$
8	40320	16	20,922,789,888,000

Moore's Law^a to the Rescue?^b

- Moore's law says the computing power doubles every 1.5 years.
- So the computing power grows like

 $4^{y/3}$,

where y is the number of years from now.

- Assume Moore's law holds forever.
- Can you let the law take care of exponential complexity?

^aMoore (1965).

^bContributed by Ms. Amy Liu (**J94922016**) on May 15, 2006. Thanks also to a lively discussion on September 14, 2010.

Moore's Law to the Rescue (continued)?

- Suppose a problem takes a^n seconds of CPU time to solve now, where n is the input length.
- The same problem will take

$\frac{a^n}{4^{y/3}}$

seconds to solve y years from now.

- In particular, the hardware $3n \log_4 a$ years from now takes 1 second to solve it.
- The overall complexity becomes linear in n!

Moore's Law to the Rescue (concluded)?

- Potential objections:
 - Moore's law may not hold forever.
 - The total number of operations is the same; so the algorithm remains exponential in complexity.^a
- What is a "good" theory on computational complexity?

^aContributed by Mr. Hung-Jr Shiu (D00921020) on September 14, 2011.

Turing Machines

Tarski has stressed in his lecture (and I think justly) the great importance of the concept of general recursiveness (or Turing's computability). — Kurt Gödel (1946)

What Is Computation?

- That can be coded in an **algorithm**.^a
- An algorithm is a detailed step-by-step method for solving a problem.
 - The Euclidean algorithm for the greatest common divisor is an algorithm.
 - "Let s be the least upper bound of compact set A" is not an algorithm.
 - "Let s be a smallest element of a finite-sized array" can be solved by an algorithm.

^aMuhammad ibn Mūsā Al-Khwārizmī (780–850).

Turing Machines^a

- A Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K is a finite set of **states**.^b
- $s \in K$ is the **initial state**.
- Σ is a finite set of **symbols** (disjoint from K).

 $-\Sigma$ includes \bigsqcup (blank) and \triangleright (first symbol).

• $\delta: K \times \Sigma \to (K \cup \{h, \text{"yes", "no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ is a transition function.

 $- \leftarrow (left), \rightarrow (right), and - (stay)$ signify cursor

movements.

^aTuring (1936).

^bTuring (1936), "If we admitted an infinity of states of mind, some of them will be 'arbitrarily close' and will be confused."

More about δ

- The program has the halting state (h), the accepting state ("yes"), and the rejecting state ("no").
- Given current state $q \in K$ and current symbol $\sigma \in \Sigma$,

$$\delta(q,\sigma) = (p,\rho,D).$$

- It specifies:
 - * The next state p;
 - * The symbol ρ to be written over σ ;
 - * The direction D the cursor will move *afterwards*.
- Assume $\delta(q, \rhd) = (p, \rhd, \rightarrow)$.
 - So the cursor never falls off the left end of the string.

More about δ (concluded)

• Think of the program as lines of codes:

 $\delta(q_1, \sigma_1) = (p_1, \rho_1, D_1),$ $\delta(q_2, \sigma_2) = (p_2, \rho_2, D_2),$ \vdots

$$\delta(q_n, \sigma_n) = (p_n, \rho_n, D_n).$$

- Assume the state is q and the symbol under the cursor σ .
- The line of code that matches (q, σ) is executed.^a
- Then the process is repeated.

^aSo there should be one and only one instruction for every possible pair (q, σ) . Contributed by Mr. Ya-Hsun Chang (B96902025, R00922044) on September 13, 2011.

The Operations of TMs

- Initially the state is *s*.
- The string on the tape is initialized to a ▷, followed by a finite-length string x ∈ (Σ {∐})*.
- x is the **input** of the TM.
 - The input must not contain \bigsqcup s (why?)!
- The cursor is pointing to the first symbol, always a \triangleright .
- The TM takes each step according to δ .
- The cursor may overwrite [] to make the string longer during the computation.

"Physical" Interpretations

- The tape: computer memory and registers.
 - Except that the tape can be lengthened on demand.
- δ : program.
 - A program has a *finite* size.
- K: instruction numbers.
- s: "main()" in the C programming language.
- Σ : **alphabet**, much like the ASCII code.

The Halting of a TM

• A TM *M* may **halt** in three cases.

"yes": M accepts its input x, and M(x) = "yes".

"no": M rejects its input x, and M(x) = "no".

- h: M(x) = y means the string (tape) consists of a ▷, followed by a finite string y, whose last symbol is not \sqcup , followed by a string of \sqcup s.
 - -y is the **output** of the computation.
 - -y may be empty denoted by ϵ .
- If M never halts on x, then write $M(x) = \nearrow$.

The First TM $\mathsf{Program}^{\mathrm{a}}$

• Assume $M = (K, \Sigma, \delta, s)$, where $K = \{s, h\}$, $\Sigma = \{0, 1, \sqcup, \triangleright\}$, and

$p \in K$	$\sigma\in\Sigma$	$\delta(p,\sigma)$
s	\triangleright	$(s, \rhd, ightarrow)$
S	1	(s, 0, ightarrow)
S	0	$(s, 1, \rightarrow)$
S		$(h,\sqcup,-)$

• This TM converts all 1's in the input string to 0's and vice versa.

^aContributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on September 21, 2013.

The Second TM $\mathsf{Program}^{\mathrm{a}}$

• Assume $M = (K, \Sigma, \delta, s)$, where $K = \{s, s_1, h\}$, $\Sigma = \{0, 1, \sqcup, \triangleright\}$, and

 a
Contributed by Mr. Zheyuan (Jeffrey) Gao (
 $\tt R01922142)$ on September 21, 2013.

$p \in K$	$\sigma\in\Sigma$	$\delta(p,\sigma)$
S	\bigtriangleup	$(s, \triangleright, \rightarrow)$
S	1	$(s_1, 1, \rightarrow)$
S	0	$(s, 0, \rightarrow)$
s_1	0	$(s, 0, \rightarrow)$
s_1	1	(h, 1, -)
S		$(h,\sqcup,-)$
<i>s</i> ₁		$(h,\sqcup,-)$

The Second TM Program (concluded)

- This TM scans to the right until it finds two consecutive 1's and then halts.
- Otherwise, it halts at the end of the input string.

The Third TM Program

• Assume $M = (K, \Sigma, \delta, s)$, where $K = \{s, s_1, \text{"yes"}, \text{"no"}\}, \Sigma = \{0, 1, \sqcup, \triangleright\}$, and

$p \in K$	$\sigma\in\Sigma$	$\delta(p,\sigma)$
s	\bigtriangleup	$(s, \triangleright, \rightarrow)$
s	1	$(s_1, 1, \rightarrow)$
s	0	$(s, 0, \rightarrow)$
s_1	0	$(s, 0, \rightarrow)$
s_1	1	("yes", 1, -)
s		$("no", \sqcup, -)$
s_1		$("no", \sqcup, -)$

The Third TM Program (concluded)

- This TM accepts the input if there are two consecutive 1's.
- Otherwise, it rejects the input string.

Why Turing Machines?

- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
- One can conceivably develop a complexity theory based on something similar to C, C++ or Java.
- But the added complexity does not yield additional fundamental insights.
- We will describe TMs in pseudocode only.^a

^aBut students are strongly encouraged to read and understand the TM codes in the textbook to gain insight on this programming language.

Remarks

- A computation model should be "physically" realizable.
 - E.g., our brain, at least as powerful as a Turing machine, is physical.
- Although a TM requires a tape of potentially infinite length, which is not realizable, it is not a major *conceptual* issue.^a
 - Imagine you ("the program") are living next to a paper mill while carrying out a TM code using pencil ("the cursor") and paper ("the tape").
 - The mill will produce extra paper if needed.

^aThanks to a lively discussion on September 20, 2006.

Remarks (concluded)

- Even our computer is only an approximation of a TM for the same reason.
 - But it is easy to imagine our computer with more and more address space, memory space, and disk space.

The Concept of Configuration

- A **configuration**^a is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
 - What does your PC save before it sleeps?
 - Enough for it to resume work later.
- Similar to the concept of state in Markov process.

^aThis term was due to Turing (1936).

Configurations (concluded)

- A configuration is a triple (q, w, u):
 - $-q \in K.$
 - $w \in \Sigma^*$ is the string to the left of the cursor (inclusive).
 - $u \in \Sigma^*$ is the string to the right of the cursor.
- Note that (w, u) describes both the string and the cursor position.

Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration (q', w', u') in one step,

$$(q, w, u) \xrightarrow{M} (q', w', u'),$$

if a step of M from configuration (q, w, u) results in configuration (q', w', u').

- $(q, w, u) \xrightarrow{M^k} (q', w', u')$: Configuration (q, w, u) yields configuration (q', w', u') after $k \in \mathbb{N}$ steps.
- $(q, w, u) \xrightarrow{M^*} (q', w', u')$: Configuration (q, w, u) yields configuration (q', w', u').

Alan Turing (1912–1954)

Richard Dawkins (2006), "Turing arguably made a greater contribution to defeating the Nazis than Eisenhower or Churchill."

A TM Program To Insert a Symbol

- We want to compute f(x) = ax.
 - The TM moves its cursor to the last symbol.
 - It moves the last symbol of x to the right by one position.
 - It moves the next to last symbol to the right, and so on.
 - The TM finally writes a in the first position.
- The total number of steps is O(n), where n is the length of x.

Palindromes

- A string is a **palindrome** if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes:
 - It matches the first character with the last character.^a
 - It matches the second character with the next to last character, etc. (see next page).
 - "yes" for palindromes and "no" for nonpalindromes.
- This program takes $O(n^2)$ steps.
- Can we do better?

^aBryson (2001), "Possibly the most demanding form of wordplay in English[.]"

A Matching Lower Bound for PALINDROME **Theorem 1 (Hennie (1965))** PALINDROME on single-string TMs takes $\Omega(n^2)$ steps in the worst case.

The Proof: Communications

- P(x, y) = "yes" if and only if x = y.
- Our input is more restricted; hence any lower bound holds for the original problem.
- Each communication between the two halves across the cut is a state from K, hence of size O(1).
- C(x, y): the sequence of communications for palindrome problem P(x, y) across the cut.
 - This crossing sequence is a sequence of states from K.

The Proof: Communications (concluded)

- $C(x, x) \neq C(y, y)$ when $x \neq y$.
 - Suppose otherwise, C(x, x) = C(y, y).
 - Then C(x, y) = C(y, y) by the cut-and-paste argument (see next page).
 - Hence P(x, y) has the same answer as P(y, y)!
- So C(x, x) is distinct for each x.

The Proof: Amount of Communications

- Assume |x| = |y| = m = n/3.
- |C(x, x)| is the number of times the cut is crossed.
- We first seek a lower bound on the total number of communications for *n*-bit palindromes:

$$\sum_{x \in \{0,1\}^m} |\operatorname{C}(x,x)|.$$

• As C(x, x) is distinct for each x (p. 46), there are 2^m distinct C(x, x)s.

• Define

$$\kappa \equiv (m+1) \log_{|K|} 2 - \log_{|K|} m - 1 + \log_{|K|} (|K| - 1).$$

The Proof: Amount of Communications (continued)

- There are $\leq |K|^i$ distinct C(x, x)s with |C(x, x)| = i.
- Hence there are at most

$$\sum_{i=0}^{\kappa} |K|^{i} = \frac{|K|^{\kappa+1} - 1}{|K| - 1} \le \frac{|K|^{\kappa+1}}{|K| - 1} = \frac{2^{m+1}}{m}$$

distinct C(x, x)s with $|C(x, x)| \le \kappa$.

- The rest must have $|C(x, x)| > \kappa$.
- So at least $2^m \frac{2^{m+1}}{m} C(x, x)$ have $|C(x, x)| > \kappa$.

The Proof: Amount of Communications (concluded)Thus

$$\sum_{x \in \{0,1\}^m} |\operatorname{C}(x,x)| \geq \sum_{x \in \{0,1\}^m, |\operatorname{C}(x,x)| > \kappa} |\operatorname{C}(x,x)| \\ > \left(2^m - \frac{2^{m+1}}{m}\right) \kappa \\ = \kappa 2^m \frac{m-2}{m}.$$

• As $\kappa = \Theta(m)$, the total number of communications is

$$\sum_{x \in \{0,1\}^m} |C(x,x)| = \Omega(m2^m).$$
(1)

The Proof (continued)

We now lower-bound the worst-case number of communication points in the middle section.

The Proof (continued)

- C_i(x, x) denotes the sequence of communications for P(x, x) given the cut at position i.
- Then $\sum_{i=1}^{m} |C_i(x, x)|$ is the number of steps spent in the middle section for P(x, x).

• Let
$$T(n) = \max_{x \in \{0,1\}^m} \sum_{i=1}^m |C_i(x,x)|.$$

- T(n) is the worst-case running time spent in the middle section when dealing with any P(x, x) with |x| = m.
- Note that $T(n) \ge \sum_{i=1}^{m} |C_i(x, x)|$ for any $x \in \{0, 1\}^m$.

The Proof (concluded)

• By the pigeonhole principle,^a there exists an $1 \le i^* \le m$,

$$\sum_{x \in \{0,1\}^m} |C_{i^*}(x,x)| \le \frac{2^m T(n)}{m}$$

• Eq. (1) on p. 50 says that

$$\sum_{x \in \{0,1\}^m} |C_{i^*}(x,x)| = \Omega(m2^m).$$

• Hence

$$T(n) = \Omega(m^2) = \Omega(n^2).$$

^aDirichlet (1805–1859).

Comments on Lower-Bound Proofs

- They are usually difficult.
 - Worthy of a Ph.D. degree.
- An algorithm whose running time matches a lower bound means it is optimal.
 - The simple $O(n^2)$ algorithm for PALINDROME is optimal.
- This happens rarely and is model dependent.
 - Searching, sorting, PALINDROME, matrix-vector multiplication, etc.