
knapsack Has an Approximation Threshold of Zeroa

Theorem 78 For any ϵ, there is a polynomial-time

ϵ-approximation algorithm for knapsack.

• We have n weights w1, w2, . . . , wn ∈ Z+, a weight limit

W , and n values v1, v2, . . . , vn ∈ Z+.b

• We must find an S ⊆ {1, 2, . . . , n} such that∑
i∈S wi ≤ W and

∑
i∈S vi is the largest possible.

aIbarra and Kim (1975).
bIf the values are fractional, the result is slightly messier, but the

main conclusion remains correct. Contributed by Mr. Jr-Ben Tian

(R92922045) on December 29, 2004.
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The Proof (continued)

• Let

V = max{v1, v2, . . . , vn}.

• Clearly,
∑

i∈S vi ≤ nV .

• Let 0 ≤ i ≤ n and 0 ≤ v ≤ nV .

• W (i, v) is the minimum weight attainable by selecting

only from the first i items and with a total value of v.

– It is an (n+ 1)× (nV + 1) table.

• Set W (0, v) = ∞ for v ∈ { 1, 2, . . . , nV } and W (i, 0) = 0

for i = 0, 1, . . . , n.a

aContributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu

(D98922013) on December 28, 2009.
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The Proof (continued)

• Then, for 0 ≤ i < n,

W (i+ 1, v) = min{W (i, v),W (i, v − vi+1) + wi+1}.

• Finally, pick the largest v such that W (n, v) ≤ W .a

• The running time is O(n2V ), not polynomial time.

• Key idea: Limit the number of precision bits.

aLawler (1979).
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v

<W

nV
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The Proof (continued)

• Define

v′i = 2b
⌊ vi
2b

⌋
.

– This is equivalent to zeroing each vi’s last b bits.

• Call the original instance

x = (w1, . . . , wn,W, v1, . . . , vn).

• Call the approximate instance

x′ = (w1, . . . , wn,W, v′1, . . . , v
′
n).
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The Proof (continued)

• Solving x′ takes time O(n2V/2b).

– The algorithm only performs subtractions on the

vi-related values.

– So the b last bits can be removed from the

calculations.

– That is, use v′′i =
⌊
vi

2b

⌋
and V = max(v′′1 , v

′′
2 , . . . , v

′′
n)

in the calculations.

– Then multiply the returned value by 2b.

– It is an (n+ 1)× (nV + 1)/2b table.
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The Proof (continued)

• The solution S′ is close to the optimum solution S:∑
i∈S′

vi ≥
∑
i∈S′

v′i ≥
∑
i∈S

v′i ≥
∑
i∈S

(vi − 2b) ≥
∑
i∈S

vi − n2b.

• Hence ∑
i∈S′

vi ≥
∑
i∈S

vi − n2b.

• Without loss of generality, assume wi ≤ W for all i.

– Otherwise, item i is redundant.

• V is a lower bound on opt.

– Picking an item with value V is a legitimate choice.
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The Proof (concluded)

• The relative error from the optimum is ≤ n2b/V :∑
i∈S vi −

∑
i∈S′ vi∑

i∈S vi
≤

∑
i∈S vi −

∑
i∈S′ vi

V
≤ n2b

V
.

• Suppose we pick b = ⌊log2 ϵV
n ⌋.

• The algorithm becomes ϵ-approximate.a

• The running time is then O(n2V/2b) = O(n3/ϵ), a

polynomial in n and 1/ϵ.b

aSee Eq. (16) on p. 683.
bIt hence depends on the value of 1/ϵ. Thanks to a lively class dis-

cussion on December 20, 2006. If we fix ϵ and let the problem size

increase, then the complexity is cubic. Contributed by Mr. Ren-Shan

Luoh (D97922014) on December 23, 2008.
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Comments

• independent set and node cover are reducible to

each other (Corollary 40, p. 348).

• node cover has an approximation threshold at most

0.5 (p. 691).

• But independent set is unapproximable (see the

textbook).

• independent set limited to graphs with degree ≤ k is

called k-degree independent set.

• k-degree independent set is approximable (see the

textbook).
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On P vs. NP
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If 50 million people believe a foolish thing,

it’s still a foolish thing.

— George Bernard Shaw (1856–1950)
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Densitya

The density of language L ⊆ Σ∗ is defined as

densL(n) = |{x ∈ L : |x | ≤ n}|.

• If L = {0, 1}∗, then densL(n) = 2n+1 − 1.

• So the density function grows at most exponentially.

• For a unary language L ⊆ {0}∗,

densL(n) ≤ n+ 1.

– Because L ⊆ {ϵ, 0, 00, . . . ,
n︷ ︸︸ ︷

00 · · · 0, . . .}.
aBerman and Hartmanis (1977).
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Sparsity

• Sparse languages are languages with polynomially

bounded density functions.

• Dense languages are languages with superpolynomial

density functions.
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Self-Reducibility for sat

• An algorithm exhibits self-reducibility if it finds a

certificate by exploiting algorithms for the decision

version of the same problem.

• Let ϕ be a boolean expression in n variables

x1, x2, . . . , xn.

• t ∈ {0, 1}j is a partial truth assignment for

x1, x2, . . . , xj .

• ϕ[ t ] denotes the expression after substituting the truth

values of t for x1, x2, . . . , x| t | in ϕ.
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An Algorithm for sat with Self-Reduction

We call the algorithm below with empty t.

1: if | t | = n then

2: return ϕ[ t ];

3: else

4: return ϕ[ t0 ] ∨ ϕ[ t1 ];

5: end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).a

aThe same idea was used in the proof of Proposition 71 on p. 583.
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NP-Completeness and Densitya

Theorem 79 If a unary language U ⊆ {0}∗ is

NP-complete, then P = NP.

• Suppose there is a reduction R from sat to U .

• We use R to find a truth assignment that satisfies

boolean expression ϕ with n variables if it is satisfiable.

• Specifically, we use R to prune the exponential-time

exhaustive search on p. 727.

• The trick is to keep the already discovered results ϕ[ t ]

in a table H.

aBerman (1978).
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1: if | t | = n then

2: return ϕ[ t ];

3: else

4: if (R(ϕ[ t ]), v) is in table H then

5: return v;

6: else

7: if ϕ[ t0 ] = “satisfiable” or ϕ[ t1 ] = “satisfiable” then

8: Insert (R(ϕ[ t ]), “satisfiable”) into H;

9: return “satisfiable”;

10: else

11: Insert (R(ϕ[ t ]), “unsatisfiable”) into H;

12: return “unsatisfiable”;

13: end if

14: end if

15: end if
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The Proof (continued)

• Since R is a reduction, R(ϕ[ t ]) = R(ϕ[ t′ ]) implies that

ϕ[ t ] and ϕ[ t′ ] must be both satisfiable or unsatisfiable.

• R(ϕ[ t ]) has polynomial length ≤ p(n) because R runs in

log space.

• As R maps to unary numbers, there are only

polynomially many p(n) values of R(ϕ[ t ]).

• How many nodes of the complete binary tree (of

invocations/truth assignments) need to be visited?
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The Proof (continued)

• A search of the table takes time O(p(n)) in the

random-access memory model.

• The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

• If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.

• The invocations of the algorithm form a binary tree of

depth at most n.
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The Proof (continued)

• There is a set T = {t1, t2, . . .} of invocations (partial

truth assignments, i.e.) such that:

1. |T | ≥ (M − 1)/(2n).

2. All invocations in T are recursive (nonleaves).

3. None of the elements of T is a prefix of another.
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�VW�VWHS��'HOHWH
OHDYHV���0�−�����
QRQOHDYHV�UHPDLQLQJ

�QG�VWHS��6HOHFW�DQ\
ERWWRP�XQGHOHWHG
LQYRFDWLRQ�W�DQG�DGG
LW�WR�7

�UG�VWHS��'HOHWH�DOO�W
V
DW�PRVW�Q�DQFHVWRUV
�SUHIL[HV��IURP
IXUWKHU�FRQVLGHUDWLRQ
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An Example

r

a c

d e f

g h i j

l k

1

2

3

4

5

T = {h, j }; none of h and j is a prefix of the other.
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The Proof (continued)

• All invocations t ∈ T have different R(ϕ[ t ]) values.

– The invocation of one started after the invocation of

the other had terminated.

– If they had the same value, the one that was invoked

later would have looked it up, and therefore would

not be recursive, a contradiction.

• The existence of T implies that there are at least

(M − 1)/(2n) different R(ϕ[ t ]) values in the table.
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The Proof (concluded)

• We already know that there are at most p(n) such

values.

• Hence (M − 1)/(2n) ≤ p(n).

• Thus M ≤ 2np(n) + 1.

• The running time is therefore O(Mp(n)) = O(np2(n)).

• We comment that this theorem holds for any sparse

language, not just unary ones.a

aMahaney (1980).
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coNP-Completeness and Density

Theorem 80 (Fortung (1979)) If a unary language

U ⊆ {0}∗ is coNP-complete, then P = NP.

• Suppose there is a reduction R from sat complement

to U .

• The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.
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The Power of Monotone Circuits

• Monotone circuits can only compute monotone boolean

functions.

• They are powerful enough to solve a P-complete

problem, monotone circuit value (p. 294).

• There are NP-complete problems that are not monotone;

they cannot be computed by monotone circuits at all.

• There are NP-complete problems that are monotone;

they can be computed by monotone circuits.

– hamiltonian path and clique.
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cliquen,k

• cliquen,k is the boolean function deciding whether a

graph G = (V,E) with n nodes has a clique of size k.

• The input gates are the
(
n
2

)
entries of the adjacency

matrix of G.

– Gate gij is set to true if the associated undirected

edge { i, j } exists.

• cliquen,k is a monotone function.

• Thus it can be computed by a monotone circuit.

• This does not rule out that nonmonotone circuits for

cliquen,k may use fewer gates, however.
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Crude Circuits

• One possible circuit for cliquen,k does the following.

1. For each S ⊆ V with |S| = k, there is a circuit with

O(k2) ∧-gates testing whether S forms a clique.

2. We then take an or of the outcomes of all the
(
n
k

)
subsets S1, S2, . . . , S(nk)

.

• This is a monotone circuit with O(k2
(
n
k

)
) gates, which is

exponentially large unless k or n− k is a constant.

• A crude circuit CC(X1, X2, . . . , Xm) tests if any of

Xi ⊆ V forms a clique.

– The above-mentioned circuit is CC(S1, S2, . . . , S(nk)
).
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The Proof: Positive Examples

• Analysis will be applied to only positive examples and

negative examples as inputs.

• A positive example is a graph that has
(
k
2

)
edges

connecting k nodes in all possible ways.

• There are
(
n
k

)
such graphs.

• They all should elicit a true output from cliquen,k.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 741



The Proof: Negative Examples

• Color the nodes with k − 1 different colors and join by

an edge any two nodes that are colored differently.

• There are (k − 1)n such graphs.

• They all should elicit a false output from cliquen,k.

– Each set of k nodes must have 2 identically colored

nodes; hence there is no edge between them.
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Positive and Negative Examples with k = 5

$�SRVLWLYH�H[DPSOH $�QHJDWLYH�H[DPSOH
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A Warmup to Razborov’s Theorem

Lemma 81 (The birthday problem) The probability of

collision, C(N, q), when q balls are thrown randomly into

N ≥ q bins is at most

q(q − 1)

2N
.

Lemma 82 If crude circuit CC(X1, X2, . . . , Xm) computes

cliquen,k, then m ≥ nn1/8/20 for n sufficiently large.
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The Proof (continued)

• Let k = n1/4.

• Let ℓ =
√
k/10.

• Let X ⊆ V .

• Suppose |X | ≤ ℓ.
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The Proof (continued)

• A random f : X → { 1, 2, . . . , k − 1 } has collisions with

probability less than 0.01 (see Lemma 81 on p. 744).

• Hence f is one-to-one with probability 0.99.

• When f is one-to-one, f is a coloring of X with k − 1

colors without repeated colors.

• As a result, when f is one-to-one, it generates a clique

on X.
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The Proof (continued)

• Note that a random negative example is simply a

random g : V → { 1, 2, . . . , k − 1 }.

• So our random f : X → { 1, 2, . . . , k − 1 } is simply a

random g restricted to X.

• In summary, the probability that X is not a clique when

supplied with a random negative example is at most

0.01.
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The Proof (continued)

• Now suppose |X | > ℓ.

• Consider the probability that X is a clique when

supplied with a positive example.

• It is the probability that X is part of the clique.

• Hence the desired probability is
(
n−ℓ
k−ℓ

)
/
(
n
k

)
.
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The Proof (continued)

• Now, (
n−ℓ
k−ℓ

)(
n
k

) =
k(k − 1) · · · (k − ℓ+ 1)

n(n− 1) · · · (n− ℓ+ 1)

≤
(
k

n

)ℓ

≤ n−(3/4) ℓ

≤ n−
√
k/20

= n−n1/8/20.
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The Proof (concluded)

• In summary, the probability that X is a clique when

supplied with a random positive example is at most

n−n1/8/20.

• So we need at least nn1/8/20 Xs in the crude circuit.
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Sunflowers

• Fix p ∈ Z+ and ℓ ∈ Z+.

• A sunflower is a family of p sets {P1, P2, . . . , Pp}, called
petals, each of cardinality at most ℓ.

• Furthermore, all pairs of sets in the family must have

the same intersection (called the core of the sunflower).

FRUH
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A Sample Sunflower

{{1, 2, 3, 5}, {1, 2, 6, 9}, {0, 1, 2, 11},

{1, 2, 12, 13}, {1, 2, 8, 10}, {1, 2, 4, 7}}.

����
Æ¿³È

É¿³Ì

Ë¿³ÄÃ
Ç¿³Ê

Ã¿³ÄÄ

ÄÅ¿³ÄÆ

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 752



The Erdős-Rado Lemma

Lemma 83 Let Z be a family of more than M = (p− 1)ℓℓ!

nonempty sets, each of cardinality ℓ or less. Then Z must

contain a sunflower (with p petals).

• Induction on ℓ.

• For ℓ = 1, p different singletons form a sunflower (with

an empty core).

• Suppose ℓ > 1.

• Consider a maximal subset D ⊆ Z of disjoint sets.

– Every set in Z −D intersects some set in D.
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The Proof of the Erdős-Rado Lemma (continued)

For example,

Z = {{1, 2, 3, 5}, {1, 3, 6, 9}, {0, 4, 8, 11},

{4, 5, 6, 7}, {5, 8, 9, 10}, {6, 7, 9, 11}},

D = {{1, 2, 3, 5}, {0, 4, 8, 11}}.
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The Proof of the Erdős-Rado Lemma (continued)

• Suppose D contains at least p sets.

– D constitutes a sunflower with an empty core.

• Suppose D contains fewer than p sets.

– Let C be the union of all sets in D.

– |C | < (p− 1)ℓ.

– C intersects every set in Z by D’s maximality.

– There is a d ∈ C that intersects more than
M

(p−1)ℓ = (p− 1)ℓ−1(ℓ− 1)! sets in Z.

– Consider Z ′ = {Z − {d} : Z ∈ Z, d ∈ Z}.
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The Proof of the Erdős-Rado Lemma (concluded)

• (continued)

– Z ′ has more than M ′ = (p− 1)ℓ−1(ℓ− 1)! sets.

– M ′ is just M with ℓ replaced with ℓ− 1.

– Z ′ contains a sunflower by induction, say

{P1, P2, . . . , Pp}.

– Now,

{P1 ∪ {d}, P2 ∪ {d}, . . . , Pp ∪ {d}}

is a sunflower in Z.
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Paul Erdős (1913–1996)
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Comments on the Erdős-Rado Lemma

• A family of more than M sets must contain a sunflower.

• Plucking a sunflower means replacing the sets in the

sunflower by its core.

• By repeatedly finding a sunflower and plucking it, we can

reduce a family with more than M sets to a family with

at most M sets.

• If Z is a family of sets, the above result is denoted by

pluck(Z).

• Note: pluck(Z) is not unique.
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An Example of Plucking

• Recall the sunflower on p. 752:

Z = {{1, 2, 3, 5}, {1, 2, 6, 9}, {0, 1, 2, 11},

{1, 2, 12, 13}, {1, 2, 8, 10}, {1, 2, 4, 7}}

• Then

pluck(Z) = {{1, 2}}.
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Razborov’s Theorem

Theorem 84 (Razborov (1985)) There is a constant c

such that for large enough n, all monotone circuits for

cliquen,k with k = n1/4 have size at least ncn1/8

.

• We shall approximate any monotone circuit for

cliquen,k by a restricted kind of crude circuit.

• The approximation will proceed in steps: one step for

each gate of the monotone circuit.

• Each step introduces few errors (false positives and false

negatives).

• But the final crude circuit has exponentially many

errors.
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The Proof

• Fix k = n1/4.

• Fix ℓ = n1/8.

• Note thata

2

(
ℓ

2

)
≤ k − 1.

• p will be fixed later to be n1/8 log n.

• Fix M = (p− 1)ℓℓ!.

– Recall the Erdős-Rado lemma (p. 753).

aCorrected by Mr. Moustapha Bande (D98922042) on January 05,

2010.
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The Proof (continued)

• Each crude circuit used in the approximation process is

of the form CC(X1, X2, . . . , Xm), where:

– Xi ⊆ V .

– |Xi| ≤ ℓ.

– m ≤ M .

• It answers true if any Xi is a clique.

• We shall show how to approximate any circuit for

cliquen,k by such a crude circuit, inductively.

• The induction basis is straightforward:

– Input gate gij is the crude circuit CC({i, j}).
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The Proof (continued)

• Any monotone circuit can be considered the or or and

of two subcircuits.

• We shall show how to build approximators of the overall

circuit from the approximators of the two subcircuits.

– We are given two crude circuits CC(X ) and CC(Y).

– X and Y are two families of at most M sets of nodes,

each set containing at most ℓ nodes.

– We construct the approximate or and the

approximate and of these subcircuits.

– Then show both approximations introduce few errors.
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The Proof: or

• CC(X ∪Y) is equivalent to the or of CC(X ) and CC(Y).

– A set of nodes C ∈ X ∪ Y is a clique if and only if

C ∈ X is a clique or C ∈ Y is a clique.

• Violations in using CC(X ∪Y) occur when |X ∪ Y| > M .

• Such violations can be eliminated by using

CC(pluck(X ∪ Y))

as the approximate or of CC(X ) and CC(Y).
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The Proof: or

• If CC(Z) is true, then CC(pluck(Z)) must be true.

– The quick reason: If Y is a clique, then a subset of Y

must also be a clique.

– For each Y ∈ X ∪ Y, there must exist at least one

X ∈ pluck(X ∪ Y) such that X ⊆ Y .

– If Y is a clique, then this X is also a clique.

• We now bound the number of errors this approximate

or makes on the positive and negative examples.
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The Proof: or (concluded)

• CC(pluck(X ∪ Y)) introduces a false positive if a

negative example makes both CC(X ) and CC(Y) return

false but makes CC(pluck(X ∪ Y)) return true.

• CC(pluck(X ∪ Y)) introduces a false negative if a

positive example makes either CC(X ) or CC(Y) return

true but makes CC(pluck(X ∪ Y)) return false.

• How many false positives and false negatives are

introduced by CC(pluck(X ∪ Y))?
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The Number of False Positives

Lemma 85 CC(pluck(X ∪ Y)) introduces at most
M
p−1 2

−p(k − 1)n false positives.

• A plucking replaces the sunflower {Z1, Z2, . . . , Zp} with

its core Z.

• A false positive is necessarily a coloring such that:

– There is a pair of identically colored nodes in each

petal Zi (and so both crude circuits return false).

– But the core contains distinctly colored nodes.

∗ This implies at least one node from each

same-color pair was plucked away.

• We now count the number of such colorings.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 767



Proof of Lemma 85 (continued)
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Proof of Lemma 85 (continued)

• Color nodes V at random with k− 1 colors and let R(X)

denote the event that there are repeated colors in set X.

• Now prob[R(Z1) ∧ · · · ∧R(Zp) ∧ ¬R(Z)] is at most

prob[R(Z1) ∧ · · · ∧R(Zp)|¬R(Z)]

=

p∏
i=1

prob[R(Zi)|¬R(Z)] ≤
p∏

i=1

prob[R(Zi)]. (19)

– First equality holds because R(Zi) are independent

given ¬R(Z) as Z contains their only common nodes.

– Last inequality holds as the likelihood of repetitions

in Zi decreases given no repetitions in Z ⊆ Zi.
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Proof of Lemma 85 (continued)

• Consider two nodes in Zi.

• The probability that they have identical color is 1
k−1 .

• Now prob[R(Zi) ] ≤
(|Zi|

2 )
k−1 ≤ (ℓ2)

k−1 ≤ 1
2 .

• So the probabilitya that a random coloring is a new false

positive is at most 2−p by inequality (19).

• As there are (k − 1)n different colorings, each plucking

introduces at most 2−p(k − 1)n false positives.

aProportion, i.e.
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Proof of Lemma 85 (concluded)

• Recall that | X ∪ Y | ≤ 2M .

• pluck(X ∪ Y) ends the moment the set system contains

≤ M sets.

• Each plucking reduces the number of sets by p− 1.

• Hence at most M
p−1 pluckings occur in pluck(X ∪ Y).

• At most
M

p− 1
2−p(k − 1)n

false positives are introduced.a

aNote that the numbers of errors are added not multiplied. Recall that

we count how many new errors are introduced by each approximation

step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.
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The Number of False Negatives

Lemma 86 CC(pluck(X ∪Y)) introduces no false negatives.

• A plucking replaces sets in a crude circuit by their

(common) subset.

• This makes the test for cliqueness less stringent (p.

765).a

aRecall that CC(pluck(X ∪ Y)) introduces a false negative if a pos-

itive example makes either CC(X ) or CC(Y) return true but makes

CC(pluck(X ∪ Y)) return false.
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The Number of False Negatives (concluded)

Y

X
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The Proof: and

• The approximate and of crude circuits CC(X ) and

CC(Y) is

CC(pluck({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ ℓ})).

• We now count the number of errors this approximate

and makes on the positive and negative examples.
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The Proof: and (concluded)

• The approximate and introduces a false positive if a

negative example makes either CC(X ) or CC(Y) return
false but makes the approximate and return true.

• The approximate and introduces a false negative if a

positive example makes both CC(X ) and CC(Y) return
true but makes the approximate and return false.

• How many false positives and false negatives are

introduced by the approximate and?
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The Number of False Positives

Lemma 87 The approximate and introduces at most

M22−p(k − 1)n false positives.

• We prove this claim in stages.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y}) introduces no false

positives.

– If Xi ∪ Yj is a clique, both Xi and Yj must be

cliques, making both CC(X ) and CC(Y) return true.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ ℓ}) introduces
no additional false positives because we are testing fewer

sets for cliqueness.
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Proof of Lemma 87 (concluded)

• | {Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ ℓ} | ≤ M2.

• Each plucking reduces the number of sets by p− 1.

• So pluck({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ ℓ})
involves ≤ M2/(p− 1) pluckings.

• Each plucking introduces at most 2−p(k − 1)n false

positives by the proof of Lemma 85 (p. 767).

• The desired upper bound is

[M2/(p− 1) ] 2−p(k − 1)n ≤ M22−p(k − 1)n.
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The Number of False Negatives

Lemma 88 The approximate and introduces at most

M2
(
n−ℓ−1
k−ℓ−1

)
false negatives.

• We again prove this claim in stages.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y}) introduces no false

negatives.

– Suppose both CC(X ) and CC(Y) accept a positive

example with a clique of size k.

– This clique must contain an Xi ∈ X and a Yj ∈ Y.

∗ This is why both CC(X ) and CC(Y) return true.

– As the clique contains Xi ∪ Yj , the new circuit

returns true.
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Proof of Lemma 88 (continued)

Yj Xi

Clique of size k
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Proof of Lemma 88 (continued)

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ ℓ}) introduces
≤ M2

(
n−ℓ−1
k−ℓ−1

)
false negatives.

– Deletion of set Z = Xi ∪ Yj larger than ℓ introduces

false negatives only if Z is part of a clique.

– There are
(
n−|Z|
k−|Z|

)
such cliques.

∗ It is the number of positive examples whose clique

contains Z.

–
(
n−|Z|
k−|Z|

)
≤

(
n−ℓ−1
k−ℓ−1

)
as |Z| > ℓ.

– There are at most M2 such Zs.
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Proof of Lemma 88 (concluded)

• Plucking introduces no false negatives.

– Recall that if CC(Z) is true, then CC(pluck(Z))

must be true (p. 765).
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Two Summarizing Lemmas

From Lemmas 85 (p. 767) and 87 (p. 776), we have:

Lemma 89 Each approximation step introduces at most

M22−p(k − 1)n false positives.

From Lemmas 86 (p. 772) and 88 (p. 778), we have:

Lemma 90 Each approximation step introduces at most

M2
(
n−ℓ−1
k−ℓ−1

)
false negatives.
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The Proof (continued)

• The above two lemmas show that each approximation

step introduces “few” false positives and false negatives.

• We next show that the resulting crude circuit has “a

lot” of false positives or false negatives.
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The Final Crude Circuit

Lemma 91 Every final crude circuit is:

1. Identically false—thus wrong on all positive examples.

2. Or outputs true on at least half of the negative examples.

• Suppose it is not identically false.

• By construction, it accepts at least those graphs that

have a clique on some set X of nodes, with |X | ≤ ℓ,

which at n1/8 is less than k = n1/4.

• The proof of Lemma 85 (p. 767ff) shows that at least

half of the colorings assign different colors to nodes in X.

• So half of the negative examples have a clique in X and

are accepted.
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The Proof (continued)

• Recall the constants on p. 761: k = n1/4, ℓ = n1/8,

p = n1/8 log n, M = (p− 1)ℓℓ! < n(1/3)n1/8

for large n.

• Suppose the final crude circuit is identically false.

– By Lemma 90 (p. 782), each approximation step

introduces at most M2
(
n−ℓ−1
k−ℓ−1

)
false negatives.

– There are
(
n
k

)
positive examples.

– The original monotone circuit for cliquen,k has at

least (
n
k

)
M2

(
n−ℓ−1
k−ℓ−1

) ≥ 1

M2

(
n− ℓ

k

)ℓ

≥ n(1/12)n1/8

gates for large n.
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The Proof (concluded)

• Suppose the final crude circuit is not identically false.

– Lemma 91 (p. 784) says that there are at least

(k − 1)n/2 false positives.

– By Lemma 89 (p. 782), each approximation step

introduces at most M22−p(k − 1)n false positives

– The original monotone circuit for cliquen,k has at

least

(k − 1)n/2

M22−p(k − 1)n
=

2p−1

M2
≥ n(1/3)n1/8

gates.
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Alexander Razborov (1963–)
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P ̸= NP Proved?

• Razborov’s theorem says that there is a monotone

language in NP that has no polynomial monotone

circuits.

• If we can prove that all monotone languages in P have

polynomial monotone circuits, then P ̸= NP.

• But Razborov proved in 1985 that some monotone

languages in P have no polynomial monotone circuits!
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Finis
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