KNAPSACK Has an Approximation Threshold of Zero ${ }^{\text {a }}$
Theorem 78 For any $\epsilon$, there is a polynomial-time $\epsilon$-approximation algorithm for KNAPSACK.

- We have $n$ weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}^{+}$, a weight limit $W$, and $n$ values $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{Z}^{+}$. ${ }^{\text {b }}$
- We must find an $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i}$ is the largest possible.
${ }^{\text {a }}$ Ibarra and Kim (1975).
${ }^{\mathrm{b}}$ If the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (R92922045) on December 29, 2004.


## The Proof (continued)

- Let

$$
V=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Clearly, $\sum_{i \in S} v_{i} \leq n V$.
- Let $0 \leq i \leq n$ and $0 \leq v \leq n V$.
- $W(i, v)$ is the minimum weight attainable by selecting only from the first $i$ items and with a total value of $v$.
- It is an $(n+1) \times(n V+1)$ table.
- Set $W(0, v)=\infty$ for $v \in\{1,2, \ldots, n V\}$ and $W(i, 0)=0$ for $i=0,1, \ldots, n$. ${ }^{\text {a }}$

[^0]
## The Proof (continued)

- Then, for $0 \leq i<n$,

$$
W(i+1, v)=\min \left\{W(i, v), W\left(i, v-v_{i+1}\right)+w_{i+1}\right\} .
$$

- Finally, pick the largest $v$ such that $W(n, v) \leq W$. ${ }^{\text {a }}$
- The running time is $O\left(n^{2} V\right)$, not polynomial time.
- Key idea: Limit the number of precision bits.
${ }^{\text {a }}$ Lawler (1979).



## The Proof (continued)

- Define

$$
v_{i}^{\prime}=2^{b}\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor .
$$

- This is equivalent to zeroing each $v_{i}$ 's last $b$ bits.
- Call the original instance

$$
x=\left(w_{1}, \ldots, w_{n}, W, v_{1}, \ldots, v_{n}\right) .
$$

- Call the approximate instance

$$
x^{\prime}=\left(w_{1}, \ldots, w_{n}, W, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right) .
$$

## The Proof (continued)

- Solving $x^{\prime}$ takes time $O\left(n^{2} V / 2^{b}\right)$.
- The algorithm only performs subtractions on the $v_{i}$-related values.
- So the $b$ last bits can be removed from the calculations.
- That is, use $v_{i}^{\prime \prime}=\left\lfloor\frac{v_{i}}{2^{\natural}}\right\rfloor$ and $V=\max \left(v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}\right)$ in the calculations.
- Then multiply the returned value by $2^{b}$.
- It is an $(n+1) \times(n V+1) / 2^{b}$ table.


## The Proof (continued)

- The solution $S^{\prime}$ is close to the optimum solution $S$ :

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S^{\prime}} v_{i}^{\prime} \geq \sum_{i \in S} v_{i}^{\prime} \geq \sum_{i \in S}\left(v_{i}-2^{b}\right) \geq \sum_{i \in S} v_{i}-n 2^{b}
$$

- Hence

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S} v_{i}-n 2^{b}
$$

- Without loss of generality, assume $w_{i} \leq W$ for all $i$.
- Otherwise, item $i$ is redundant.
- $V$ is a lower bound on OPT.
- Picking an item with value $V$ is a legitimate choice.


## The Proof (concluded)

- The relative error from the optimum is $\leq n 2^{b} / V$ :

$$
\frac{\sum_{i \in S} v_{i}-\sum_{i \in S^{\prime}} v_{i}}{\sum_{i \in S} v_{i}} \leq \frac{\sum_{i \in S} v_{i}-\sum_{i \in S^{\prime}} v_{i}}{V} \leq \frac{n 2^{b}}{V}
$$

- Suppose we pick $b=\left\lfloor\log _{2} \frac{\epsilon V}{n}\right\rfloor$.
- The algorithm becomes $\epsilon$-approximate. ${ }^{\text {a }}$
- The running time is then $O\left(n^{2} V / 2^{b}\right)=O\left(n^{3} / \epsilon\right)$, a polynomial in $n$ and $1 / \epsilon$. ${ }^{\text {b }}$

[^1]
## Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 40, p. 348).
- NODE COVER has an approximation threshold at most 0.5 (p. 691).
- But independent set is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called $k$-DEGREE INDEPENDENT SET.
- $k$-DEGREE INDEPENDENT SET is approximable (see the textbook).


## On P vs. NP

If 50 million people believe a foolish thing, it's still a foolish thing. - George Bernard Shaw (1856-1950)

## Density ${ }^{\text {a }}$

The density of language $L \subseteq \Sigma^{*}$ is defined as

$$
\operatorname{dens}_{L}(n)=|\{x \in L:|x| \leq n\}| .
$$

- If $L=\{0,1\}^{*}$, then $\operatorname{dens}_{L}(n)=2^{n+1}-1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq\{0\}^{*}$,

$$
\operatorname{dens}_{L}(n) \leq n+1 .
$$

- Because $L \subseteq\{\epsilon, 0,00, \ldots, \overbrace{00 \cdots 0}^{n}, \ldots\}$.

[^2]
## Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- Dense languages are languages with superpolynomial density functions.


## Self-Reducibility for SAT

- An algorithm exhibits self-reducibility if it finds a certificate by exploiting algorithms for the decision version of the same problem.
- Let $\phi$ be a boolean expression in $n$ variables $x_{1}, x_{2}, \ldots, x_{n}$.
- $t \in\{0,1\}^{j}$ is a partial truth assignment for $x_{1}, x_{2}, \ldots, x_{j}$.
- $\phi[t]$ denotes the expression after substituting the truth values of $t$ for $x_{1}, x_{2}, \ldots, x_{|t|}$ in $\phi$.


## An Algorithm for sat with Self-Reduction

We call the algorithm below with empty $t$.
1: if $|t|=n$ then
2: return $\phi[t]$;
3: else
4: return $\phi[t 0] \vee \phi[t 1]$;
5: end if
The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth- $n$ binary tree). ${ }^{a}$

[^3]
## NP-Completeness and Density ${ }^{\text {a }}$

Theorem 79 If a unary language $U \subseteq\{0\}^{*}$ is $N P$-complete, then $P=N P$.

- Suppose there is a reduction $R$ from sat to $U$.
- We use $R$ to find a truth assignment that satisfies boolean expression $\phi$ with $n$ variables if it is satisfiable.
- Specifically, we use $R$ to prune the exponential-time exhaustive search on p. 727.
- The trick is to keep the already discovered results $\phi[t]$ in a table $H$.
${ }^{\text {a }}$ Berman (1978).

```
1: if }|t|=n\mathrm{ then
2: return }\phi[t]
3: else
4: if (R(\phi[t]),v) is in table H then
5: return v;
6: else
7: if \phi[t0]="satisfiable" or }\phi[t1]=\mathrm{ "satisfiable" then
8: Insert (R(\phi[t]), "satisfiable") into H;
9: return "satisfiable";
10: else
11: Insert (R(\phi[t]),"unsatisfiable") into H;
12: return "unsatisfiable";
13: end if
14: end if
15: end if
```


## The Proof (continued)

- Since $R$ is a reduction, $R(\phi[t])=R\left(\phi\left[t^{\prime}\right]\right)$ implies that $\phi[t]$ and $\phi\left[t^{\prime}\right]$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because $R$ runs in $\log$ space.
- As $R$ maps to unary numbers, there are only polynomially many $p(n)$ values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?


## The Proof (continued)

- A search of the table takes time $O(p(n))$ in the random-access memory model.
- The running time is $O(M p(n))$, where $M$ is the total number of invocations of the algorithm.
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.
- The invocations of the algorithm form a binary tree of depth at most $n$.


## The Proof (continued)

- There is a set $T=\left\{t_{1}, t_{2}, \ldots\right\}$ of invocations (partial truth assignments, i.e.) such that:

1. $|T| \geq(M-1) /(2 n)$.
2. All invocations in $T$ are recursive (nonleaves).
3. None of the elements of $T$ is a prefix of another.

3 rd step: Delete all $t$ 's at most $n$ ancestors (prefixes) from further consideration


2nd step: Select any bottom undeleted invocation $t$ and add it to $T$

1st step: Delete
leaves; $(M-1) / 2$
nonleaves remaining

$T=\{\mathrm{h}, \mathrm{j}\}$; none of h and j is a prefix of the other.

## The Proof (continued)

- All invocations $t \in T$ have different $R(\phi[t])$ values.
- The invocation of one started after the invocation of the other had terminated.
- If they had the same value, the one that was invoked later would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of $T$ implies that there are at least $(M-1) /(2 n)$ different $R(\phi[t])$ values in the table.


## The Proof (concluded)

- We already know that there are at most $p(n)$ such values.
- Hence $(M-1) /(2 n) \leq p(n)$.
- Thus $M \leq 2 n p(n)+1$.
- The running time is therefore $O(M p(n))=O\left(n p^{2}(n)\right)$.
- We comment that this theorem holds for any sparse language, not just unary ones. ${ }^{\text {a }}$
${ }^{\text {a }}$ Mahaney (1980).


## coNP-Completeness and Density

Theorem 80 (Fortung (1979)) If a unary language $U \subseteq\{0\}^{*}$ is coNP-complete, then $P=N P$.

- Suppose there is a reduction $R$ from sat complement to $U$.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.


## The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem, MONOTONE CIRCUIT VALUE (p. 294).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
- HAMILTONIAN PATH and CLIQUE.


## CLIQUE $_{n, k}$

- CLIQUE $_{n, k}$ is the boolean function deciding whether a graph $G=(V, E)$ with $n$ nodes has a clique of size $k$.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of $G$.
- Gate $g_{i j}$ is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE $_{n, k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for CLIQUE $_{n, k}$ may use fewer gates, however.


## Crude Circuits

- One possible circuit for CLIQUE $_{n, k}$ does the following.

1. For each $S \subseteq V$ with $|S|=k$, there is a circuit with $O\left(k^{2}\right) \wedge$-gates testing whether $S$ forms a clique.
2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}$.

- This is a monotone circuit with $O\left(k^{2}\binom{n}{k}\right)$ gates, which is exponentially large unless $k$ or $n-k$ is a constant.
- A crude circuit $\mathrm{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ tests if any of $X_{i} \subseteq V$ forms a clique.
- The above-mentioned circuit is $\mathrm{CC}\left(S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}\right)$.


## The Proof: Positive Examples

- Analysis will be applied to only positive examples and negative examples as inputs.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting $k$ nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from $\operatorname{CLIQUE}_{n, k}$.


## The Proof: Negative Examples

- Color the nodes with $k-1$ different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^{n}$ such graphs.
- They all should elicit a false output from CLIQUE $_{n, k}$.
- Each set of $k$ nodes must have 2 identically colored nodes; hence there is no edge between them.

Positive and Negative Examples with $k=5$


A positive example


A negative example

## A Warmup to Razborov's Theorem

Lemma 81 (The birthday problem) The probability of collision, $C(N, q)$, when $q$ balls are thrown randomly into $N \geq q$ bins is at most

$$
\frac{q(q-1)}{2 N} .
$$

Lemma 82 If crude circuit $C C\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ computes CLIQUE $_{n, k}$, then $m \geq n^{n^{1 / 8} / 20}$ for $n$ sufficiently large.

## The Proof (continued)

- Let $k=n^{1 / 4}$.
- Let $\ell=\sqrt{k} / 10$.
- Let $X \subseteq V$.
- Suppose $|X| \leq \ell$.


## The Proof (continued)

- A random $f: X \rightarrow\{1,2, \ldots, k-1\}$ has collisions with probability less than 0.01 (see Lemma 81 on p. 744).
- Hence $f$ is one-to-one with probability 0.99.
- When $f$ is one-to-one, $f$ is a coloring of $X$ with $k-1$ colors without repeated colors.
- As a result, when $f$ is one-to-one, it generates a clique on $X$.


## The Proof (continued)

- Note that a random negative example is simply a random $g: V \rightarrow\{1,2, \ldots, k-1\}$.
- So our random $f: X \rightarrow\{1,2, \ldots, k-1\}$ is simply a random $g$ restricted to $X$.
- In summary, the probability that $X$ is not a clique when supplied with a random negative example is at most 0.01.


## The Proof (continued)

- Now suppose $|X|>\ell$.
- Consider the probability that $X$ is a clique when supplied with a positive example.
- It is the probability that $X$ is part of the clique.
- Hence the desired probability is $\binom{n-\ell}{k-\ell} /\binom{n}{k}$.


## The Proof (continued)

- Now,

$$
\begin{aligned}
\frac{\binom{n-\ell}{k-\ell}}{\binom{n}{k}} & =\frac{k(k-1) \cdots(k-\ell+1)}{n(n-1) \cdots(n-\ell+1)} \\
& \leq\left(\frac{k}{n}\right)^{\ell} \\
& \leq n^{-(3 / 4) \ell} \\
& \leq n^{-\sqrt{k} / 20} \\
& =n^{-n^{1 / 8} / 20}
\end{aligned}
$$

## The Proof (concluded)

- In summary, the probability that $X$ is a clique when supplied with a random positive example is at most $n^{-n^{1 / 8} / 20}$.
- So we need at least $n^{n^{1 / 8} / 20} X \mathrm{~S}$ in the crude circuit.


## Sunflowers

- Fix $p \in \mathbb{Z}^{+}$and $\ell \in \mathbb{Z}^{+}$.
- A sunflower is a family of $p$ sets $\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}$, called petals, each of cardinality at most $\ell$.
- Furthermore, all pairs of sets in the family must have the same intersection (called the core of the sunflower).



## A Sample Sunflower

$$
\begin{aligned}
& \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\}, \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\} .
\end{aligned}
$$



## The Erdős-Rado Lemma

Lemma 83 Let $\mathcal{Z}$ be a family of more than $M=(p-1)^{\ell} \ell$ ! nonempty sets, each of cardinality $\ell$ or less. Then $\mathcal{Z}$ must contain a sunflower (with $p$ petals).

- Induction on $\ell$.
- For $\ell=1, p$ different singletons form a sunflower (with an empty core).
- Suppose $\ell>1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
- Every set in $\mathcal{Z}-\mathcal{D}$ intersects some set in $\mathcal{D}$.

The Proof of the Erdős-Rado Lemma (continued) For example,

$$
\begin{aligned}
\mathcal{Z}= & \{\{1,2,3,5\},\{1,3,6,9\},\{0,4,8,11\} \\
& \{4,5,6,7\},\{5,8,9,10\},\{6,7,9,11\}\} \\
\mathcal{D}= & \{\{1,2,3,5\},\{0,4,8,11\}\}
\end{aligned}
$$

## The Proof of the Erdős-Rado Lemma (continued)

- Suppose $\mathcal{D}$ contains at least $p$ sets.
- $\mathcal{D}$ constitutes a sunflower with an empty core.
- Suppose $\mathcal{D}$ contains fewer than $p$ sets.
- Let $C$ be the union of all sets in $\mathcal{D}$.
$-|C|<(p-1) \ell$.
- $C$ intersects every set in $\mathcal{Z}$ by $\mathcal{D}$ 's maximality.
- There is a $d \in C$ that intersects more than $\frac{M}{(p-1) \ell}=(p-1)^{\ell-1}(\ell-1)!$ sets in $\mathcal{Z}$.
- Consider $\mathcal{Z}^{\prime}=\{Z-\{d\}: Z \in \mathcal{Z}, d \in Z\}$.


## The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
- $\mathcal{Z}^{\prime}$ has more than $M^{\prime}=(p-1)^{\ell-1}(\ell-1)$ ! sets.
$-M^{\prime}$ is just $M$ with $\ell$ replaced with $\ell-1$.
$-\mathcal{Z}^{\prime}$ contains a sunflower by induction, say

$$
\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}
$$

- Now,

$$
\left\{P_{1} \cup\{d\}, P_{2} \cup\{d\}, \ldots, P_{p} \cup\{d\}\right\}
$$

is a sunflower in $\mathcal{Z}$.

## Paul Erdős (1913-1996)



## Comments on the Erdős-Rado Lemma

- A family of more than $M$ sets must contain a sunflower.
- Plucking a sunflower means replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than $M$ sets to a family with at most $M$ sets.
- If $\mathcal{Z}$ is a family of sets, the above result is denoted by $\operatorname{pluck}(\mathcal{Z})$.
- Note: $\operatorname{pluck}(\mathcal{Z})$ is not unique.


## An Example of Plucking

- Recall the sunflower on p. 752:

$$
\begin{aligned}
\mathcal{Z}= & \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\}, \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$

- Then

$$
\operatorname{pluck}(\mathcal{Z})=\{\{1,2\}\} .
$$

## Razborov's Theorem

Theorem 84 (Razborov (1985)) There is a constant $c$ such that for large enough n, all monotone circuits for $\operatorname{CLIQUE}_{n, k}$ with $k=n^{1 / 4}$ have size at least $n^{c n^{1 / 8}}$.

- We shall approximate any monotone circuit for CLIQUE $_{n, k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the final crude circuit has exponentially many errors.


## The Proof

- Fix $k=n^{1 / 4}$.
- Fix $\ell=n^{1 / 8}$.
- Note that ${ }^{a}$

$$
2\binom{\ell}{2} \leq k-1
$$

- $p$ will be fixed later to be $n^{1 / 8} \log n$.
- Fix $M=(p-1)^{\ell} \ell$ !.
- Recall the Erdős-Rado lemma (p. 753).

[^4]
## The Proof (continued)

- Each crude circuit used in the approximation process is of the form $\operatorname{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, where:
- $X_{i} \subseteq V$.
$-\left|X_{i}\right| \leq \ell$.
- $m \leq M$.
- It answers true if any $X_{i}$ is a clique.
- We shall show how to approximate any circuit for CLIQUE $_{n, k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
- Input gate $g_{i j}$ is the crude circuit $\mathrm{CC}(\{i, j\})$.


## The Proof (continued)

- Any monotone circuit can be considered the or or AND of two subcircuits.
- We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
- We are given two crude circuits $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$.
$-\mathcal{X}$ and $\mathcal{Y}$ are two families of at most $M$ sets of nodes, each set containing at most $\ell$ nodes.
- We construct the approximate OR and the approximate AND of these subcircuits.
- Then show both approximations introduce few errors.


## The Proof: OR

- $\operatorname{CC}(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.
- A set of nodes $\mathcal{C} \in \mathcal{X} \cup \mathcal{Y}$ is a clique if and only if $\mathcal{C} \in \mathcal{X}$ is a clique or $\mathcal{C} \in \mathcal{Y}$ is a clique.
- Violations in using $\operatorname{CC}(\mathcal{X} \cup \mathcal{Y})$ occur when $|\mathcal{X} \cup \mathcal{Y}|>M$.
- Such violations can be eliminated by using

$$
\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))
$$

as the approximate or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.

## The Proof: OR

- If $\operatorname{CC}(\mathcal{Z})$ is true, then $\operatorname{CC}(\operatorname{pluck}(\mathcal{Z}))$ must be true.
- The quick reason: If $Y$ is a clique, then a subset of $Y$ must also be a clique.
- For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \operatorname{pluck}(\mathcal{X} \cup \mathcal{Y})$ such that $X \subseteq Y$.
- If $Y$ is a clique, then this $X$ is also a clique.
- We now bound the number of errors this approximate or makes on the positive and negative examples.


## The Proof: OR (concluded)

- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return false but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $\operatorname{CC}(\mathcal{X})$ or $\operatorname{CC}(\mathcal{Y})$ return true but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- How many false positives and false negatives are introduced by $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ ?


## The Number of False Positives

Lemma $85 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces at most $\frac{M}{p-1} 2^{-p}(k-1)^{n}$ false positives.

- A plucking replaces the sunflower $\left\{Z_{1}, Z_{2}, \ldots, Z_{p}\right\}$ with its core $Z$.
- A false positive is necessarily a coloring such that:
- There is a pair of identically colored nodes in each petal $Z_{i}$ (and so both crude circuits return false).
- But the core contains distinctly colored nodes. * This implies at least one node from each same-color pair was plucked away.
- We now count the number of such colorings.


## Proof of Lemma 85 (continued)



## Proof of Lemma 85 (continued)

- Color nodes $V$ at random with $k-1$ colors and let $R(X)$ denote the event that there are repeated colors in set $X$.
- Now $\operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \wedge \neg R(Z)\right]$ is at most

$$
\begin{align*}
& \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \mid \neg R(Z)\right] \\
= & \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right) \mid \neg R(Z)\right] \leq \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right)\right] . \tag{19}
\end{align*}
$$

- First equality holds because $R\left(Z_{i}\right)$ are independent given $\neg R(Z)$ as $Z$ contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in $Z_{i}$ decreases given no repetitions in $Z \subseteq Z_{i}$.


## Proof of Lemma 85 (continued)

- Consider two nodes in $Z_{i}$.
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now $\operatorname{prob}\left[R\left(Z_{i}\right)\right] \leq \frac{\left(\begin{array}{l}\left|z_{i}\right|\end{array}\right)}{k-1} \leq \frac{\binom{e}{2}}{k-1} \leq \frac{1}{2}$.
- So the probability ${ }^{\text {a }}$ that a random coloring is a new false positive is at most $2^{-p}$ by inequality (19).
- As there are $(k-1)^{n}$ different colorings, each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives.

[^5]
## Proof of Lemma 85 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2 M$.
- pluck $(\mathcal{X} \cup \mathcal{Y})$ ends the moment the set system contains $\leq M$ sets.
- Each plucking reduces the number of sets by $p-1$.
- Hence at most $\frac{M}{p-1}$ pluckings occur in $\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$
\frac{M}{p-1} 2^{-p}(k-1)^{n}
$$

false positives are introduced. ${ }^{\text {a }}$

[^6]
## The Number of False Negatives

Lemma $86 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- A plucking replaces sets in a crude circuit by their (common) subset.
- This makes the test for cliqueness less stringent (p. 765). ${ }^{\text {a }}$

[^7]The Number of False Negatives (concluded)


## The Proof: And

- The approximate And of crude circuits $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ is

$$
\operatorname{CC}\left(\operatorname{pluck}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)\right) .
$$

- We now count the number of errors this approximate AND makes on the positive and negative examples.


## The Proof: AND (concluded)

- The approximate AND introduces a false positive if a negative example makes either $\operatorname{CC}(\mathcal{X})$ or $\operatorname{CC}(\mathcal{Y})$ return false but makes the approximate and return true.
- The approximate AND introduces a false negative if a positive example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true but makes the approximate AND return false.
- How many false positives and false negatives are introduced by the approximate AnD?


## The Number of False Positives

Lemma 87 The approximate AnD introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

- We prove this claim in stages.
- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives.
- If $X_{i} \cup Y_{j}$ is a clique, both $X_{i}$ and $Y_{j}$ must be cliques, making both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true.
- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces no additional false positives because we are testing fewer sets for cliqueness.


## Proof of Lemma 87 (concluded)

- $\left|\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right| \leq M^{2}$.
- Each plucking reduces the number of sets by $p-1$.
- So pluck $\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ involves $\leq M^{2} /(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives by the proof of Lemma 85 (p. 767).
- The desired upper bound is

$$
\left[M^{2} /(p-1)\right] 2^{-p}(k-1)^{n} \leq M^{2} 2^{-p}(k-1)^{n} .
$$

## The Number of False Negatives

Lemma 88 The approximate AND introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false negatives.
- Suppose both $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ accept a positive example with a clique of size $k$.
- This clique must contain an $X_{i} \in \mathcal{X}$ and a $Y_{j} \in \mathcal{Y}$. * This is why both $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ return true.
- As the clique contains $X_{i} \cup Y_{j}$, the new circuit returns true.


## Proof of Lemma 88 (continued)



## Proof of Lemma 88 (continued)

- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces $\leq M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- Deletion of set $Z=X_{i} \cup Y_{j}$ larger than $\ell$ introduces false negatives only if $Z$ is part of a clique.
- There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
* It is the number of positive examples whose clique contains $Z$.
$-\binom{n-|Z|}{k-|Z|} \leq\binom{ n-\ell-1}{k-\ell-1}$ as $|Z|>\ell$.
- There are at most $M^{2}$ such $Z \mathrm{~s}$.


## Proof of Lemma 88 (concluded)

- Plucking introduces no false negatives.
- Recall that if $\operatorname{CC}(\mathcal{Z})$ is true, then $\operatorname{CC}(\operatorname{pluck}(\mathcal{Z}))$ must be true (p. 765).


## Two Summarizing Lemmas

From Lemmas 85 (p. 767) and 87 (p. 776), we have:
Lemma 89 Each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

From Lemmas 86 (p. 772) and 88 (p. 778), we have:
Lemma 90 Each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

## The Proof (continued)

- The above two lemmas show that each approximation step introduces "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.


## The Final Crude Circuit

Lemma 91 Every final crude circuit is:

1. Identically false—thus wrong on all positive examples.
2. Or outputs true on at least half of the negative examples.

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set $X$ of nodes, with $|X| \leq \ell$, which at $n^{1 / 8}$ is less than $k=n^{1 / 4}$.
- The proof of Lemma 85 (p. 767 ff ) shows that at least half of the colorings assign different colors to nodes in $X$.
- So half of the negative examples have a clique in $X$ and are accepted.


## The Proof (continued)

- Recall the constants on p. 761: $k=n^{1 / 4}, \ell=n^{1 / 8}$, $p=n^{1 / 8} \log n, M=(p-1)^{\ell} \ell!<n^{(1 / 3) n^{1 / 8}}$ for large $n$.
- Suppose the final crude circuit is identically false.
- By Lemma 90 (p. 782), each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- There are ( $\left.\begin{array}{l}n \\ k\end{array}\right)$ positive examples.
- The original monotone circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{\binom{n}{k}}{M^{2}\binom{n-\ell-1}{k-\ell-1}} \geq \frac{1}{M^{2}}\left(\frac{n-\ell}{k}\right)^{\ell} \geq n^{(1 / 12) n^{1 / 8}}
$$

gates for large $n$.

## The Proof (concluded)

- Suppose the final crude circuit is not identically false.
- Lemma 91 (p. 784) says that there are at least $(k-1)^{n} / 2$ false positives.
- By Lemma 89 (p. 782), each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives
- The original monotone circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{(k-1)^{n} / 2}{M^{2} 2^{-p}(k-1)^{n}}=\frac{2^{p-1}}{M^{2}} \geq n^{(1 / 3) n^{1 / 8}}
$$

gates.

## Alexander Razborov (1963-)



## $P \neq$ NP Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $\mathrm{P} \neq \mathrm{NP}$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!


## Finis


[^0]:    ${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.

[^1]:    ${ }^{\text {a }}$ See Eq. (16) on p. 683.
    ${ }^{\mathrm{b}}$ It hence depends on the value of $1 / \epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix $\epsilon$ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

[^2]:    ${ }^{\text {a }}$ Berman and Hartmanis (1977).

[^3]:    ${ }^{\text {a }}$ The same idea was used in the proof of Proposition 71 on p. 583.

[^4]:    ${ }^{\text {a }}$ Corrected by Mr. Moustapha Bande (D98922042) on January 05, 2010.

[^5]:    ${ }^{a}$ Proportion, i.e.

[^6]:    ${ }^{\text {a }}$ Note that the numbers of errors are added not multiplied. Recall that we count how many new errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

[^7]:    ${ }^{\text {a Recall that }} \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $\mathrm{CC}(\mathcal{X})$ or $\mathrm{CC}(\mathcal{Y})$ return true but makes $\mathrm{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.

