Zero-Knowledge Proof of 3 Colorability $^{\rm a}$

1: for $i = 1, 2, ..., |E|^2$ do

- 2: Peggy chooses a random permutation π of the 3-coloring ϕ ;
- 3: Peggy samples encryption schemes randomly, commits^b them, and sends $\pi(\phi(1)), \pi(\phi(2)), \ldots, \pi(\phi(|V|))$ encrypted to Victor;
- 4: Victor chooses at random an edge $e \in E$ and sends it to Peggy for the coloring of the endpoints of e;

5: **if**
$$e = (u, v) \in E$$
 then

- 6: Peggy reveals the coloring of u and v and "proves" that they correspond to their encryptions;
- 7: else
- 8: Peggy stops;
- 9: **end if**

^aGoldreich, Micali, and Wigderson (1986).

^bContributed by Mr. Ren-Shuo Liu (D98922016) on December 22, 2009.

10: **if** the "proof" provided in Line 6 is not valid **then**

11: Victor rejects and stops;

12: **end if**

13: **if**
$$\pi(\phi(u)) = \pi(\phi(v))$$
 or $\pi(\phi(u)), \pi(\phi(v)) \notin \{1, 2, 3\}$ **then**

14: Victor rejects and stops;

15: **end if**

16: end for

17: Victor accepts;

Analysis

- If the graph is 3-colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- Suppose the graph is not 3-colorable and Victor follows the protocol.
- Let e be an edge that is not colored legally.
- Victor will pick it with probability 1/m, where m = |E|.
- Then however Peggy plays, Victor will accept with probability $\leq 1 1/m$ per round.

Analysis (concluded)

• So Victor will accept with probability at most

$$(1 - 1/m)^{m^2} \le e^{-m}$$

- Thus the protocol is valid.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to *any* verifier is intricate.

Comments

• Each $\pi(\phi(i))$ is encrypted by a different cryptosystem in Line 3.^a

- Otherwise, all the colors will be revealed in Line 6.

- Each edge e must be picked randomly.^b
 - Otherwise, Peggy will know Victor's game plan and plot accordingly.

^aContributed by Ms. Yui-Huei Chang (**R96922060**) on May 22, 2008 ^bContributed by Mr. Chang-Rong Hung (**R96922028**) on May 22, 2008

Approximability

All science is dominated by the idea of approximation. — Bertrand Russell (1872–1970) Just because the problem is NP-complete does not mean that you should not try to solve it. — Stephen Cook (2002)

Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are **approximation algorithms**.
- How good are the approximations?
 - We are looking for theoretically guaranteed bounds, not "empirical" bounds.
- Are there NP problems that cannot be approximated well (assuming $NP \neq P$)?
- Are there NP problems that cannot be approximated at all (assuming $NP \neq P$)?

Some Definitions

- Given an **optimization problem**, each problem instance x has a set of **feasible solutions** F(x).
- Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^+$.
 - Here, cost refers to the quality of the feasible solution, not the time required to obtain it.
 - It is our objective function, e.g., total distance, number of satisfied expressions, or cut size.

Some Definitions (concluded)

• The **optimum cost** is

$$OPT(x) = \min_{s \in F(x)} c(s)$$

for a minimization problem.

• It is

$$OPT(x) = \max_{s \in F(x)} c(s)$$

for a maximization problem.

Approximation Algorithms

- Let (polynomial-time) algorithm M on x returns a feasible solution.
- M is an ϵ -approximation algorithm, where $\epsilon \geq 0$, if for all x,

$$\frac{|c(M(x)) - \operatorname{OPT}(x)|}{\max(\operatorname{OPT}(x), c(M(x)))} \le \epsilon.$$

- For a minimization problem,

$$\frac{c(M(x)) - \min_{s \in F(x)} c(s)}{c(M(x))} \le \epsilon.$$

– For a maximization problem,

$$\frac{\max_{s \in F(x)} c(s) - c(M(x))}{\max_{s \in F(x)} c(s)} \le \epsilon.$$
(16)

Lower and Upper Bounds

• For a minimization problem,

$$\min_{s \in F(x)} c(s) \le c(M(x)) \le \frac{\min_{s \in F(x)} c(s)}{1 - \epsilon}.$$

• For a maximization problem,

$$(1-\epsilon) \times \max_{s \in F(x)} c(s) \le c(M(x)) \le \max_{s \in F(x)} c(s).$$
(17)

Range Bounds

- ϵ ranges between 0 (best) and 1 (worst).
- For maximization problems, an ϵ -approximation algorithm returns solutions within

 $[(1-\epsilon) \times \text{Opt}, \text{Opt}].$

• For minimization problems, an ϵ -approximation algorithm returns solutions within

$$\left[\operatorname{OPT}, \frac{\operatorname{OPT}}{1-\epsilon}\right].$$

Approximation Thresholds

- For each NP-complete optimization problem, we shall be interested in determining the *smallest* ε for which there is a polynomial-time ε-approximation algorithm.
- But sometimes ϵ has no minimum value.
- The approximation threshold is the greatest lower bound of all ε ≥ 0 such that there is a polynomial-time ε-approximation algorithm.
- By a standard theorem in real analysis, such a threshold must exist.^a

^aBauldry (2009).

Approximation Thresholds (concluded)

- The approximation threshold of an optimization problem can be anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If P = NP, then all optimization problems in NP have an approximation threshold of 0.
- So we assume $P \neq NP$ for the rest of the discussion.

Approximation Ratio

• ϵ -approximation algorithms can also be defined via **approximation ratio**:^a

$$\frac{c(M(x))}{\operatorname{OPT}(x)}.$$

• For a minimization problem, the approximation ratio is

$$\frac{c(M(x))}{\min_{s\in F(x)}c(s)} \le \frac{1}{1-\epsilon}.$$
(18)

• For a maximization problem, the approximation ratio is

$$\frac{c(M(x))}{\max_{s \in F(x)} c(s)} \ge 1 - \epsilon.$$

^aWilliamson and Shmoys (2011).

NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph G = (V, E) such that for each edge in E, at least one of its endpoints is in C.
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce an approximation ratio of^a

$$\frac{c(M(x))}{\operatorname{OPT}(x)} = \Theta(\log n).$$

• So it is not an ϵ -approximation algorithm for any constant $\epsilon < 1$ according to Eq. (18).

^aChvátal (1979).

A 0.5-Approximation Algorithm $^{\rm a}$

1: $C := \emptyset;$

- 2: while $E \neq \emptyset$ do
- 3: Delete an arbitrary edge $\{u, v\}$ from E;
- 4: Add u and v to C; {Add 2 nodes to C each time.}
- 5: Delete edges incident with u or v from E;
- 6: end while

7: return C;

^aJohnson (1974).

Analysis

- It is easy to see that C is a node cover.
- C contains |C|/2 edges.^a
- No two edges of C share a node.^b
- Any node cover must contain at least one node from each of these edges.
 - If there is an edge in C whose ends are *not* in the cover, then that cover will not be a valid cover.

^aThe edges deleted in Line 3.

^bIn fact, C as a set of edges is a *maximal* matching.

Analysis (concluded)

- This means that $OPT(G) \ge |C|/2$.
- So the approximation ratio

$$\frac{|C|}{\operatorname{OPT}(G)} \le 2.$$

- So we have a 0.5-approximation algorithm.
- The approximation threshold is therefore ≤ 0.5 .

^aContributed by Mr. Jenq-Chung Li (R92922087) on December 20, 2003. Recall that König's theorem says the size of a maximum matching equals that of a minimum node cover in a bipartite graph.

Remarks

• The approximation threshold is at least^a

$$1 - \left(10\sqrt{5} - 21\right)^{-1} \approx 0.2651.$$

- The approximation threshold is 0.5 if one assumes the unique games conjecture.^b
- This ratio 0.5 is also the lower bound for any "greedy" algorithms.^c

^aDinur and Safra (2002). ^bKhot and Regev (2008). ^cDavis and Impagliazzo (2004).

Maximum Satisfiability

- Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most.
- MAX2SAT is already NP-complete (p. 325), so MAXSAT is NP-complete.
- Consider the more general k-MAXGSAT for constant k.
 - Let $\Phi = \{\phi_1, \phi_2, \dots, \phi_m\}$ be a set of boolean expressions in *n* variables.
 - Each ϕ_i is a general expression involving k variables.
 - k-MAXGSAT seeks the truth assignment that satisfies the most expressions.

A Probabilistic Interpretation of an Algorithm

- Each ϕ_i involves exactly k variables and is satisfied by s_i of the 2^k truth assignments.
- A random truth assignment $\in \{0, 1\}^n$ satisfies ϕ_i with probability $p(\phi_i) = s_i/2^k$.

 $- p(\phi_i)$ is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an average of

$$p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$$

expressions ϕ_i .

The Search Procedure

• Clearly

$$p(\Phi) = \frac{1}{2} \{ p(\Phi[x_1 = \texttt{true}]) + p(\Phi[x_1 = \texttt{false}]) \}.$$

- Select the t₁ ∈ {true, false} such that p(Φ[x₁ = t₁]) is the larger one.
- Note that $p(\Phi[x_1 = t_1]) \ge p(\Phi)$.
- Repeat the procedure with expression $\Phi[x_1 = t_1]$ until all variables x_i have been given truth values t_i and all ϕ_i are either true or false.

The Search Procedure (continued)

• By our hill-climbing procedure,

 $p(\Phi) \le p(\Phi[x_1 = t_1]) \le p(\Phi[x_1 = t_1, x_2 = t_2]) \le \cdots \le p(\Phi[x_1 = t_1, x_2 = t_2, \dots, x_n = t_n]).$

• So at least $p(\Phi)$ expressions are satisfied by truth assignment (t_1, t_2, \ldots, t_n) .

The Search Procedure (concluded)

- Note that the algorithm is *deterministic*!
- It is called the method of conditional expectations.^a

^aErdős and Selfridge (1973); Spencer (1987).

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_i —i.e., those with $p(\phi_i) > 0$.
- Hence the ratio of algorithm's output vs. the optimum is^a

$$\geq \frac{p(\Phi)}{\sum_{p(\phi_i)>0} 1} = \frac{\sum_i p(\phi_i)}{\sum_{p(\phi_i)>0} 1} \geq \min_{p(\phi_i)>0} p(\phi_i).$$

- This is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - \min_{p(\phi_i) > 0} p(\phi_i)$.
- Because $p(\phi_i) \ge 2^{-k}$, the heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 2^{-k}$.

^aRecall that $(\sum_i a_i)/(\sum_i b_i) \ge \min_i a_i/b_i$.

Back to MAXSAT

- In MAXSAT, the ϕ_i 's are clauses (like $x \lor y \lor \neg z$).
- Hence $p(\phi_i) \ge 1/2$, which happens when ϕ_i contains a single literal.
- And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 1/2$.^a
 - Suppose we set each boolean variable to true with probability $(\sqrt{5} 1)/2$, the golden ratio.
 - Then follow through the method of conditional expectations to derandomize it.
 - We will obtain a $[(3 \sqrt{5})]/2$ -approximation algorithm, where $[(3 - \sqrt{5})]/2 \approx 0.382$.^b

^aJohnson (1974).

^bLieberherr and Specker (1981).

Back to MAXSAT (concluded)

• If the clauses have k distinct literals,

$$p(\phi_i) = 1 - 2^{-k}.$$

• And the heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 2^{-k}$.

- This is the best possible for $k \ge 3$ unless P = NP.

MAX CUT Revisited

- The NP-complete MAX CUT seeks to partition the nodes of graph G = (V, E) into (S, V - S) so that there are as many edges as possible between S and V - S.^a
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local-search algorithm for MAX CUT.

^aRecall p. 355.

A 0.5-Approximation Algorithm for ${\rm MAX}\ {\rm CUT}$

- 1: $S := \emptyset;$
- 2: while $\exists v \in V$ whose switching sides results in a larger cut **do**
- 3: Switch the side of v;
- 4: end while
- 5: return S;
- A 0.12-approximation algorithm exists.^a
- 0.059-approximation algorithms do not exist unless NP = ZPP.

^aGoemans and Williamson (1995).

Analysis (continued)

- Partition $V = V_1 \cup V_2 \cup V_3 \cup V_4$, where
 - Our algorithm returns $(V_1 \cup V_2, V_3 \cup V_4)$.
 - The optimum cut is $(V_1 \cup V_3, V_2 \cup V_4)$.
- Let e_{ij} be the number of edges between V_i and V_j .
- Our algorithm returns a cut of size

$$e_{13} + e_{14} + e_{23} + e_{24}.$$

• The optimum cut size is

$$e_{12} + e_{34} + e_{14} + e_{23}.$$

Analysis (continued)

- For each node $v \in V_1$, its edges to $V_1 \cup V_2$ are outnumbered by those to $V_3 \cup V_4$.
 - Otherwise, v would have been moved to $V_3 \cup V_4$ to improve the cut.
- Considering all nodes in V_1 together, we have

 $2e_{11} + e_{12} \le e_{13} + e_{14}.$

- It is $2e_{11}$ is because each edge in V_1 is counted twice.
- The above inequality implies

$$e_{12} \le e_{13} + e_{14}.$$

Analysis (concluded)

• Similarly,

 $e_{12} \leq e_{23} + e_{24}$ $e_{34} \leq e_{23} + e_{13}$ $e_{34} \leq e_{14} + e_{24}$

• Add all four inequalities, divide both sides by 2, and add the inequality $e_{14} + e_{23} \le e_{14} + e_{23} + e_{13} + e_{24}$ to obtain

$$e_{12} + e_{34} + e_{14} + e_{23} \le 2(e_{13} + e_{14} + e_{23} + e_{24}).$$

• The above says our solution is at least half the optimum.

Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
 - KNAPSACK has a threshold of 0 (p. 713).
 - But NODE COVER (p. 691) and MAXSAT have a threshold larger than 0.
- The situation is maximally pessimistic for TSP, which cannot be approximated (p. 711).
 - The approximation threshold of TSP is 1.
 - * The threshold is 1/3 if TSP satisfies the triangular inequality.
 - The same holds for INDEPENDENT SET.

Unapproximability of ${\rm TSP}^{\rm a}$

Theorem 77 The approximation threshold of TSP is 1 unless P = NP.

- Suppose there is a polynomial-time ϵ -approximation algorithm for TSP for some $\epsilon < 1$.
- We shall construct a polynomial-time algorithm to solve the NP-complete HAMILTONIAN CYCLE.
- Given any graph G = (V, E), construct a TSP with |V| cities with distances

$$d_{ij} = \begin{cases} 1, & \text{if } \{i, j\} \in E\\ \frac{|V|}{1-\epsilon}, & \text{otherwise} \end{cases}$$

^aSahni and Gonzales (1976).

The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost |V| is returned.
 - This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned.
 - The total length of this tour is $> \frac{|V|}{1-\epsilon}$.
 - Because the algorithm is ϵ -approximate, the optimum is at least 1ϵ times the returned tour's length.
 - The optimum tour has a cost exceeding |V|.
 - Hence G has no Hamiltonian cycles.