Zero-Knowledge Proof of 3 Colorability?
1: fori=1,2,...,|E|? do
Peggy chooses a random permutation 7 of the 3-coloring ¢;

Peggy samples encryption schemes randomly, commits® them,
and sends w(¢(1)), w(d(2)),...,m(d(|V])) encrypted to Victor;

Victor chooses at random an edge e € E and sends it to Peggy

for the coloring of the endpoints of e;
if e = (u,v) € FE then

Peggy reveals the coloring of v and v and “proves” that they
correspond to their encryptions;

else
Peggy stops;

end if

2Goldreich, Micali, and Wigderson (1986).
PContributed by Mr. Ren-Shuo Liu (D98922016) on December 22,

2009.
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if the “proof” provided in Line 6 is not valid then

Victor rejects and stops;
end if

if 7(¢(u)) = m(@(v)) or w($(w)), m($(v)) & {1,2,3} then

Victor rejects and stops;
end if
: end for

: Victor accepts;
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Analysis

If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

Suppose the graph is not 3-colorable and Victor follows
the protocol.

Let e be an edge that is not colored legally.
Victor will pick it with probability 1/m, where m = | E'|.

Then however Peggy plays, Victor will accept with
probability <1 — 1/m per round.

©2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 674



Analysis (concluded)

So Victor will accept with probability at most

(1— 1/m)m2 <e M.

Thus the protocol is valid.

This protocol yields no knowledge to Victor as all he

gets is a bunch of random pairs.

The proof that the protocol is zero-knowledge to any

verifier is intricate.
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Comments

e Fach w(¢(7)) is encrypted by a different cryptosystem in
Line 3.2

— Otherwise, all the colors will be revealed in Line 6.

e Each edge e must be picked randomly.P

— Otherwise, Peggy will know Victor’s game plan and
plot accordingly.

2Contributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
PContributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008
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Approximability
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All science is dominated by

the idea of approximation.
— Bertrand Russell (1872-1970)
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Just because the problem is NP-complete
does not mean that

you should not try to solve it.
— Stephen Cook (2002)
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Tackling Intractable Problems

Many important problems are NP-complete or worse.
Heuristics have been developed to attack them.
They are approximation algorithms.

How good are the approximations?
— We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

Are there NP problems that cannot be approximated
well (assuming NP # P)?

Are there NP problems that cannot be approximated at
all (assuming NP # P)?
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Some Definitions

e Given an optimization problem, each problem

instance x has a set of feasible solutions F(z).

e Each feasible solution s € F'(x) has a cost ¢(s) € Z™.

— Here, cost refers to the quality of the feasible
solution, not the time required to obtain it.

— It is our objective function, e.g., total distance,

number of satisfied expressions, or cut size.
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Some Definitions (concluded)

e The optimum cost is

OPT(x) = sénﬁ}&) c(s)

for a minimization problem.

e [t is

OoPT =
(2) nax c(s)

for a maximization problem.
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Approximation Algorithms

e Let (polynomial-time) algorithm M on x returns a
feasible solution.

e )M is an e-approximation algorithm, where € > 0, if
for all x,

c(M(z)) —opr(z)] _
max(OPT(x),c(M(x))) —
— For a minimization problem,
o(M(2)) — minyepg e(s) _
(M (x) =°

— For a maximization problem,

MaXse F(x) C(S) - C(M(ZE))

MaXscF(z) C(S)

<e
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Lower and Upper Bounds

e For a minimization problem,

MiNge gy C(S
Bin, 0 < (o) < TERLE

e For a maximization problem,

(1 —€) x max ¢(s) <ce(M(zx)) < max c(s).

seF (x) SEF (x)
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Range Bounds
e ¢ ranges between 0 (best) and 1 (worst).

e For maximization problems, an e-approximation

algorithm returns solutions within
[ (1 —€) X OPT,OPT].

e For minimization problems, an e-approximation

algorithm returns solutions within

OPT
1 — ¢

[OPT,
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Approximation Thresholds

For each NP-complete optimization problem, we shall be
interested in determining the smallest € for which there

is a polynomial-time e-approximation algorithm.
But sometimes ¢ has no minimum value.

The approximation threshold is the greatest lower
bound of all € > 0 such that there is a polynomial-time

e-approximation algorithm.

By a standard theorem in real analysis, such a threshold

must exist.?

2Bauldry (2009).
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Approximation Thresholds (concluded)

e The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any
desired degree) and 1 (no approximation is possible).

e If P = NP, then all optimization problems in NP have
an approximation threshold of 0.

e So we assume P == NP for the rest of the discussion.
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Approximation Ratio

e c-approximation algorithms can also be defined via

approximation ratio:?

c(M(x))
OPT(x)

e For a minimization problem, the approximation ratio is

c(M(x)) - 1
mingep(zy c(s) ~ 1—e€

(18)

e For a maximization problem, the approximation ratio is
c(M(x))

> 1 —e.
MaXse F(x) C<S)

#Williamson and Shmoys (2011).
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NODE COVER

NODE COVER seeks the smallest C' C V' in graph
G = (V, E) such that for each edge in F, at least one of

its endpoints is in C.

A heuristic to obtain a good node cover is to iteratively
move a node with the highest degree to the cover.

This turns out to produce an approximation ratio of?

c(M(x))
OPT(x)

= O(logn).

So it is not an e-approximation algorithm for any

constant € < 1 according to Eq. (18).

aChvétal (1979).
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A 0.5-Approximation Algorithm?

. C = (;

. while F # () do
Delete an arbitrary edge { u,v } from F;
Add u and v to C; {Add 2 nodes to C' each time.}
Delete edges incident with u or v from FE;

. end while

. return C';

2Johnson (1974).
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Analysis

It is easy to see that C' is a node cover.
C' contains |C|/2 edges.?
No two edges of C share a node.P

Any node cover must contain at least one node from

each of these edges.

— If there is an edge in C' whose ends are not in the

cover, then that cover will not be a valid cover.

The edges deleted in Line 3.
PIn fact, C as a set of edges is a mazimal matching.
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Analysis (concluded)

This means that opT(G) > |C|/2.

So the approximation ratio

el oy
opT(G) —

So we have a (0.5-approximatioin algorithm.

The approximation threshold is therefore < 0.5.
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The 0.5 Bound Is Tight for the Algorithm?

2Contributed by Mr. Jeng-Chung Li (R92922087) on December 20,
2003. Recall that Konig’s theorem says the size of a maximum matching
equals that of a minimum node cover in a bipartite graph.
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Remarks

e The approximation threshold is at least?®

1
1— (10\F - 21) ~ 0.2651.

e The approximation threshold is 0.5 if one assumes the

unique games conjecture.”

e This ratio 0.5 is also the lower bound for any “greedy”

algorithms.©

2Dinur and Safra (2002).

PKhot and Regev (2008).
°Davis and Impagliazzo (2004).
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Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth
assignment that satisfies the most.

o MAX2SAT is already NP-complete (p. 325), so MAXSAT is
NP-complete.

e Consider the more general k-MAXGSAT for constant k.
— Let @ = {¢1,P2,...,0m} be a set of boolean

expressions in n variables.
— Each ¢; is a general expression involving k variables.

— k-MAXGSAT seeks the truth assignment that satisfies
the most expressions.
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A Probabilistic Interpretation of an Algorithm

e FEach ¢, involves exactly k variables and is satisfied by s;
of the 2% truth assignments.

e A random truth assignment € {0, 1}" satisfies ¢; with
probability p(¢;) = s;/2".

— p(¢;) is easy to calculate as k is a constant.

e Hence a random truth assignment satisfies an average of

m

p(®) = > p(e)

1=1

expressions @;.
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The Search Procedure

Clearly

% {p(®|x1 = true]) + p(®|x1 = false]) }.

Select the t; € {true,false} such that p(®|x; =t1]) is

the larger one.
Note that p(®[x1 =t1]) > p(P).

Repeat the procedure with expression ®|x; = t; ] until
all variables x; have been given truth values ¢; and all ¢,

are either true or false.
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The Search Procedure (continued)

e By our hill-climbing procedure,

p(®)
p(®lz1 =11])
p(®|x1 =11, 20 =12])

p(Plz1 =t1, 20 =12,..., 2,

e So at least p(®) expressions are satisfied by truth

assignment (t1,to,...,%t,).
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The Search Procedure (concluded)

e Note that the algorithm is deterministic!

e [t is called the method of conditional

expectations.?

2Erdés and Selfridge (1973); Spencer (1987).
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Approximation Analysis

The optimum is at most the number of satisfiable
¢;—1i.e., those with p(¢;) > 0.

Hence the ratio of algorithm’s output vs. the optimum

152

R COND ST ()

B ZP(¢¢)>0 1
This is a polynomial-time e-approximation algorithm
with € = 1 — min,4,)>0 (¢)-

Because p(¢;) > 27, the heuristic is a polynomial-time

e-approximation algorithm with e = 1 — 27%.

*Recall that (>, a;)/(D_; b;) > min; a;/b;.
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Back to MAXSAT

In MAXSAT, the ¢;’s are clauses (like x V y V —z).

Hence p(¢;) > 1/2, which happens when ¢; contains a
single literal.

And the heuristic becomes a polynomial-time

e-approximation algorithm with e = 1/2.2

— Suppose we set each boolean variable to true with
probability (v/5 — 1)/2, the golden ratio.

— Then follow through the method of conditional
expectations to derandomize it.

— We will obtain a [ (3 — v/5)]/2-approximation algorithm,
where [ (3 —1/5)]/2 ~ 0.382.°

2Johnson (1974).
PLieberherr and Specker (1981).
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Back to MAXSAT (concluded)

o If the clauses have k distinct literals,
p(p;) =1—27F,

e And the heuristic becomes a polynomial-time
e-approximation algorithm with e = 27F.

— This is the best possible for £ > 3 unless P = NP.
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MAX CUT Revisited

The NP-complete MAX CUT seeks to partition the nodes
of graph G = (V, E) into (S,V — §S) so that there are as

many edges as possible between S and V' — 5.2

Local search starts from a feasible solution and

performs “local” improvements until none are possible.

e Next we present a local-search algorithm for MAX CUT.

@Recall p. 355.
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A 0.5-Approximation Algorithm for MAX CUT
. S = @;
. while Jv € V whose switching sides results in a larger
cut do
Switch the side of v;
. end while

. return S;

e A 0.12-approximation algorithm exists.?

e 0.059-approximation algorithms do not exist unless

NP = ZPP.

2Goemans and Williamson (1995).
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Analysis

~_— Optimal cut
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Analysis (continued)

Partition V = V; U V5 U V3 U V,, where
— Our algorithm returns (V3 U Va, V3 U Vy).
— The optimum cut is (V3 U V3, Vo U Vy).

Let e;; be the number of edges between V; and V.

Our algorithm returns a cut of size
€13 T €14 T+ €23 + €24.
The optimum cut size is

€12 + €34 + €14 + €23.
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Analysis (continued)

e For each node v € V7, its edges to V7 U V5 are
outnumbered by those to V3 U Vj.

— Otherwise, v would have been moved to V3 U Vj to

improve the cut.

e Considering all nodes in V; together, we have

2e11 + e12 < e13 + e14.
— It is 2eq1 is because each edge in V; is counted twice.

e The above inequality implies

e12 < €13 + €14.
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Analysis (concluded)

e Similarly,

€23 + €24
< €23+ €13

< e14+ ey

e Add all four inequalities, divide both sides by 2, and add
the inequality e14 + ea3 < e14 + €23 + €13 + ea4 to obtain

e12 + €34 + e14 + €23 < 2(e13 + €14 + €23 + €94).

e The above says our solution is at least half the optimum.
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Approximability, Unapproximability, and Between

e KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have
approximation thresholds less than 1.

— KNAPSACK has a threshold of 0 (p. 713).
— But NODE COVER (p. 691) and MAXSAT have a
threshold larger than 0.
e The situation is maximally pessimistic for TSP, which
cannot be approximated (p. 711).

— The approximation threshold of TSP is 1.
* The threshold is 1/3 if TSP satisfies the triangular

inequality.

— The same holds for INDEPENDENT SET.
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Unapproximability of Tsp?

Theorem 77 The approximation threshold of TSP s 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm to solve
the NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, E), construct a TSP with | V|
cities with distances

if {i,jl e E

otherwise

2Sahni and Gonzales (1976).
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The Proof (concluded)

e Run the alleged approximation algorithm on this TSP.

e Suppose a tour of cost |V] is returned.

— This tour must be a Hamiltonian cycle.

Vi

e Suppose a tour with at least one edge of length — is

returned.

4
1—e€-

— The total length of this tour is >

— Because the algorithm is e-approximate, the optimum
is at least 1 — € times the returned tour’s length.

— The optimum tour has a cost exceeding | V'|.

— Hence G has no Hamiltonian cycles.
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