Gauss's Lemma

Lemma 63 (Gauss) Let p and q be two distinct odd
primes. Then (q|p) = (=1)™, where m is the number of
residues in R={igmodp:1<i<(p—1)/2} that are
greater than (p —1)/2.
e All residues in R are distinct.
— If ig = jqg mod p, then p| (j — i) or p|q.

— But neither is possible.

e No two elements of R add up to p.

— If ig+ jg = 0 mod p, then p|(i + j) or plq.

— But neither is possible.
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The Proof (continued)

Replace each of the m elements a € R such that
a>(p—1)/2 by p— a.

— This is equivalent to performing —a mod p.
Call the resulting set of residues R’.
All numbers in R’ are at most (p — 1)/2.

In fact, R ={1,2,...,(p—1)/2} (see illustration next

page).

— Otherwise, two elements of R would add up to p,
which has been shown to be impossible.
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p=7and g =>5.
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The Proof (concluded)

Alternatively, R’ = {+igmodp:1<i < (p—1)/2},

where exactly m of the elements have the minus sign.

Take the product of all elements in the two

representations of R’.

So

(p—1)/2]' = (—1)™gP~1/?[(p — 1)/2]! mod p.

Because ged([(p |!,p) = 1, the above implies

1= (—1)"¢» /2 mod p.
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Legendre's Law of Quadratic Reciprocity®
e Let p and ¢ be two distinct odd primes.

e The next result says their Legendre symbols are distinct

if and only if both numbers are 3 mod 4.

Lemma 64 (Legendre (1785), Gauss)

(pla)(glp) = (—1) =2

2First stated by Euler in 1751. Legendre (1785) did not give a correct
proof. Gauss proved the theorem when he was 19. He gave at least
8 different proofs during his life. The 152nd proof appeared in 1963.
A computer-generated formal proof was given in Russinoff (1990). As
of 2008, there have been 4 such proofs. According to Wiedijk (2008),
“the Law of Quadratic Reciprocity is the first nontrivial theorem that a

student encounters in the mathematics curriculum.”
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The Proof (continued)

e Sum the elements of R’ in the previous proof in mod2.
e On one hand, this is just Z(p_ )2 i mod 2.

e On the other hand, the sum equals

o

(p—1)/2 (p—1)/2 iq
= mp+ |q 1 — P {—J mod 2.
)3 2 |5

1=1

— m of the ig mod p are replaced by p — 7q¢ mod p.
— But signs are irrelevant under mod?2.

— m is as in Lemma 63 (p. 531).
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The Proof (continued)

e Ignore odd multipliers to make the sum equal

(p—1)/2 (p—1)/2 iq
m + 7 — {—J mod 2.

e Kquate the above with Z(p_ )2 i mod 2 to obtain

gJ mod 2.

(p—1)/2 | .
k
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The Proof (concluded)

Z?j”” L%J is the number of integral points below the
line
y = (q/p)x

for 1 <x<(p—1)/2.
Gauss’s lemma (p. 531) says (¢q|p) = (—1)™.
Repeat the proof with p and ¢q reversed.

Then (p|q) = (—1)™, where m/ is the number of integral

points above the line y = (¢/p)x for 1 <y < (¢ —1)/2.
As a result, (plq)(qlp) = (=1)™™".

But m + m/ is the total number of integral points in the

1, ]92;1] x (1, q%l] rectangle, which is % %1.
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Eisenstein’'s Rectangle

Above, p =11 and ¢ = 7.
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The Jacobi Symbol®

The Legendre symbol only works for odd prime moduli.

The Jacobi symbol (a|m) extends it to cases where m

1S not prime.

Let m = p1ps - - - pr. be the prime factorization of m.

When m > 1 is odd and ged(a, m) = 1, then

k

(a|m)=][(alp).

i=1
— Note that the Jacobi symbol equals +1.
— It reduces to the Legendre symbol when m is a prime.
e Define (a|1) = 1.
2Carl Jacobi (1804—-1851).
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for
arguments for which it is defined.

1. (ablm) = (a|m)(b|m).
2. (a|mimso) = (a|mq)(a|me).

. If a = b mod m, then (a|m) = (b|m).

3
4. (=1|m) = (=1)m=Y/2 (by Lemma 63 on p. 531).

5. (2|m) = (=1)m —1)/8a

. If a and m are both odd, then
(a|m)(m|a) = (=1)le=Dim=1/4,

2By Lemma 63 (p. 531) and some parity arguments.
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Properties of the Jacobi Symbol (concluded)

e These properties allow us to calculate the Jacobi symbol

without factorization.
e This situation is similar to the Euclidean algorithm.

e Note also that (a|m) = 1/(a|m) because (a|m) = +£1.?

2Contributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on
December 6, 2011.
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Calculation of (2200[999)

(202]999)

(2]999)(101|999)
(—1)99°=D/8(101|999)
(—1)"**7°(101(999) = (101|999)
(—

(

(—1

1)(100)(998)/4999|101) = (—1)***°°(999|101)
999101) = (90[101) = (—1)°¥*=D/8(45[101)
1)'?7(45(101) = —(45]101)
—(—1)WHU00/4 (107 |45) = —(101]45) = —(11]45)
— (=)W (45)111) = —(45[11)
—(1]11) = —1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 65 The group of set ®(n) under multiplication

mod n has a primitive root if and only if n is either 1, 2, 4,
p*, or 2pF for some nonnegative integer k and and odd

prime p.

This result is essential in the proof of the next lemma.
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The Jacobi Symbol and Primality Test?

Lemma 66 If (M|N)=MW=Y/2mod N for all
M € ®(N), then N is a prime. (Assume N is odd.)

e Assume N = mp, where p is an odd prime, gcd(m,p) = 1,

and m > 1 (not necessarily prime).
o Let r € ®(p) such that (r|p) = —1.

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M = rmod p,
M = 1 modm.

a@Mr. Clement Hsiao (B4506061, R88526067) pointed out that the text-
book’s proof for Lemma 11.8 is incorrect in January 1999 while he was

a senior.
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The Proof (continued)

e By the hypothesis,
MWN=D/2 — (M| N) = (M|p)(M|m)=—1mod N.

e Hence
MWN-1/2 — _1 mod m.

e But because M = 1 mod m,
MWN=1/2 =1 mod m,

a contradiction.
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The Proof (continued)

e Second, assume that N = p®, where p is an odd prime
and a > 2.

e By Theorem 65 (p. 544), there exists a primitive root r

modulo p?.

e From the assumption,

2
MV = [MUV—W?] — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e Asr € ®(N) (prove it), we have

r 1 =1 mod N.

e As 7’s exponent modulo N = p® is ¢(N) = p*~1(p — 1),

p*Hp—1)[(N —1),

which implies that p| (N — 1).

e But this is impossible given that p| N.
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The Proof (continued)

Third, assume that N = mp®, where p is an odd prime,
ged(m,p) = 1, m > 1 (not necessarily prime), and a is

even.
The proof mimics that of the second case.

By Theorem 65 (p. 544), there exists a primitive root r
modulo p®.

From the assumption,

2
MV = [MW—W?] — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e In particular,
MY~ =1 mod p* (13)

for all M € ®(N).

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M r mod p°,
M 1 mod m.

e Because M = r mod p® and Eq. (13),

rV 71 =1 mod p®.
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The Proof (concluded)

e As r’s exponent modulo N = p? is ¢(N) = p*~1(p —1),
p* e - DN -1,
which implies that p| (N — 1).

e But this is impossible given that p| N.
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The Number of Witnesses to Compositeness

Theorem 67 (Solovay and Strassen (1977)) If N is an
odd composite, then (M|N) = MWN=1/2 mod N for at most
half of M € ®(N).

e By Lemma 66 (p. 545) there is at least one a € ®(NV)

such that (a|N) # aN=1/2 mod N.

o Let B=1{by,ba,...,bi} C ®(N) be the set of all distinct
residues such that (b;|N) = bEN_l)/Q mod N.

e Let aB ={ab;mod N :i=1,2,...,k}.
e Clearly, aB C ®(N), too.
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The Proof (concluded)

e |aB| =k.
— ab; = ab; mod N implies N |a(b; — b;), which is
impossible because gcd(a, N) =1 and N > |b; — b;|.

e aB N B = () because

(abs) N2 = WD o (0| N (b N) = (abs| N).

e Combining the above two results, we know

Bl . 1Bl _ 5
¢(N) ~ |BUaB|
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if N is even but N # 2 then
return “N is composite”;
else if N = 2 then
return “N is a prime”;
end if
Pick M € {2,3,..., N — 1} randomly;
if gcd(M,N) > 1 then

return “N is composite”;

1:
2:
3:
4.
5:
6:
7
8:
9:

else
if (M|N)=M®Y="Y/2 mod N then

return “N is (probably) a prime”;

—_ =
)

else

—_ =

return “NN is composite”;
end if
: end if

_ =
oo
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Analysis

The algorithm certainly runs in polynomial time.

There are no false positives (for COMPOSITENESS).

— When the algorithm says the number is composite, it
is always correct.

The probability of a false negative is at most one half.

— Suppose the input is composite.

— The probability that the algorithm says the number
is a prime is < 0.5 by Theorem 67 (p. 552).

So it is a Monte Carlo algorithm for COMPOSITENESS.
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The Improved Density Attack for COMPOSITENESS

Withesses to

compositeness of | Witnesses to
N via common compositeness of

factor N via Jacobi
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Randomized Complexity Classes; RP

e Let NV be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each

step.
e N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

— If x € L, then at least half of the 2P(™) computation
paths of V on x halt with “yes” where n = |z |.

— If z ¢ L, then all computation paths halt with “no.”

e The class of all languages with polynomial Monte Carlo

TMs is denoted RP (randomized polynomial time).?

2Adleman and Manders (1977).
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Comments on RP

e In analogy to Proposition 35 (p. 306), a “yes” instance

of an RP problem has many certificates (witnesses).
e There are no false positives.

e If we associate nondeterministic steps with flipping fair
coins, then we can cast RP in the language of
probability.

— If x € L, then N(x) halts with “yes” with probability
at least 0.5 .

— If x € L, then N(x) halts with “no.”
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Comments on RP (concluded)

e The probability of false negatives is € < 0.5.

e But any constant between 0 and 1 can replace 0.5.

— Repeat the algorithm k£ = [— 1052 -| times and answer

“yes” only if all runs answer “yes.”

— The probability of false negatives becomes €* < 0.5.

e In fact, € can be arbitrarily close to 1 as long as it is at

most 1 — 1/g(n) for some polynomial g(n).
B _logj‘l2 e — O(lie) — O(q(n))
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Where RP Fits

e P C RP C NP.

— A deterministic TM is like a Monte Carlo TM except
that all the coin flips are ignored.

— A Monte Carlo TM is an NTM with extra demands
on the number of accepting paths.

e COMPOSITENESS € RP;®* PRIMES € coRP;
PRIMES € RP.P

— In fact, PRIMES € P.¢

RP U coRP is an alternative “plausible” notion of

efficient computation.

2Rabin (1976) and Solovay and Strassen (1977).

bAdleman and Huang (1987).
¢Agrawal, Kayal, and Saxena (2002).
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/PP? (Zero Probabilistic Polynomial)
The class ZPP is defined as RP N coRP.

e A language in ZPP has two Monte Carlo algorithms, one
with no false positives and the other with no false

negatives.

e If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

— A positive answer from the one without false

positives.

— A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L € ZPP.}
2: {IV; has no false positives, and N5 has no false
negatives. }

while true do
if Ni(z) = “yes” then

end if
if No(z) = “no” then

3:
4
5: return “yes”;
6
7
8 return “no”;

9: end if
10: end while
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/PP (concluded)

e The expected running time for the correct answer to

emerge is polynomial.

— The probability that a run of the 2 algorithms does

not generate a definite answer is 0.5 (why?).

— Let p(n) be the running time of each run of the

while-loop.

— The expected running time for a definite answer is

Z 0.5%p(n) = 2p(n).

e Essentially, ZPP is the class of problems that can be
solved, without errors, in expected polynomial time.
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Large Deviations

Suppose you have a biased coin.

One side has probability 0.5 + € to appear and the other
0.5 — €, for some 0 < ¢ < 0.5.

But you do not know which is which.

How to decide which side is the more likely side—with
high confidence?

Answer: Flip the coin many times and pick the side that

appeared the most times.

Question: Can you quantify the confidence?
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The Chernoff Bound?®
Theorem 68 (Chernoff (1952)) Suppose x1,x3,...,2,

are independent random variables taking the values 1 and 0

with probabilities p and 1 — p, respectively. Let X = Z?’:l X;.
Then for all 0 <0 <1,

prob| X > (14+0)pn] < e~ 0" Pn/3,

e The probability that the deviate of a binomial
random variable from its expected value

E|X]|=FE Z:m] = pn

decreases exponentially with the deviation.

2Herman Chernoff (1923—). The bound is asymptotically optimal.
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The Proof

Let t be any positive real number.

Then

prob[ X > (1 + 0) pn] = prob[e!* > 1+ rn ],

Markov’s inequality (p. 503) generalized to real-valued
random variables says that

prob [ > kE[e"*]] < 1/k.

With k = et(H0)r /Bl etX ] we have

prob[ X > (1 +0)pn] < e 1O PnpretX
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The Proof (continued)

e Because X =Y " | x; and z;’s are independent,
E[e" ] = (E[e™ )" = [1+p(e' —1)]"
e Substituting, we obtain

prob[ X > (1 +0)pn] < e "I [14pe’ —1)]"

t
e—t(1—|—0) pnepn(e —1)

as (1 4+ a)™ < e for all a > 0.
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The Proof (concluded)

e With the choice of ¢t = In(1 + 8), the above becomes

prob[X > (1+6) pn] < ePn[0—(1+0) In(1+6) |

e The exponent expands to

for 0 <60 <1.

e But it is less than
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Power of the Majority Rule

From prob[ X < (1 —68)pn] < e P2 (prove it):

Corollary 69 Ifp=(1/2) + € for some 0 < e <1/2, then

prob [sz < n/2] < g€ /2

i=1
e The textbook’s corollary to Lemma 11.9 seems

incorrect.?

e Our original problem (p. 564) hence demands, e.g.,
n ~ 1.4k /e? independent coin flips to guarantee making

an error with probability < 2% with the majority rule.

2See Dubhashi and Panconesi (2012) for many Chernoff-type bounds.
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BPP? (Bounded Probabilistic Polynomial)

e The class BPP contains all languages L for which there
is a precise polynomial-time NTM N such that:

— If x € L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

— If x ¢ L, then at least 3/4 of the computation paths

of N on x lead to “no.”

e So N accepts or rejects by a clear majority.

aGill (1977).
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Magic 3/47

The number 3/4 bounds the probability (ratio) of a

right answer away from 1/2.

Any constant strictly between 1/2 and 1 can be used
without affecting the class BPP.

In fact, as with RP,

Lo
q(n)

for any polynomial ¢(n) can replace 3/4 (p. 559).

The next algorithm shows why.
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + e.
fori=1,2,...,2k+ 1 do

Run N on input x;
end for

if “yes” is the majority answer then

44 79

yes™
else

44 7

no”;
end if

1:
2:
3:
4:
5:
6:
7
8:
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Analysis

The running time remains polynomial: 2k 4 1 times N’s

running time.

By Corollary 69 (p. 569), the probability of a false

. 2
answer is at most e~ € F.

By taking k = [ 2/€? ], the error probability is at most
1/4.

Recall that € can be any inverse polynomial.

So k remains a polynomial in n.
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Aspects of BPP

BPP is the most comprehensive yet plausible notion of

efficient computation.

— If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

— In this aspect, BPP has effectively replaced P.
(RP UcoRP) C (NP U coNP).

(RP UcoRP) C BPP.

Whether BPP C (NP U coNP) is unknown.

But it is unlikely that NP C BPP (see p. 591 and
p. 592).
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coBPP

The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

An algorithm for L € BPP becomes one for L by

reversing the answer.

So L € BPP and BPP C coBPP.
Similarly coBPP C BPP.

Hence BPP = coBPP.

This approach does not work for RP.?

21t did not work for NP either.
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BPP and coBPP
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BPP and P
Theorem 70 (Nisan and Wigderson (1994)) If every

language tn BPP only needs a pseudorandom generator

whach stretches a random seed of logarithmic length, then
BPP = P.

e We only need to show BPP C P.

e Run the BPP algorithm for each of the seeds.

— There are only 20(°8™) = O(n) seeds, a polynomial

e Accept if and only if at least 3/4 of the outcomes is a

44 7

yes.

e The running time is clearly deterministically polynomial.
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“The Good, the Bad, and the Ugly”
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