Bipartite Perfect Matching

- We are given a bipartite graph $G=(U, V, E)$.
$-U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.
$-V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- $E \subseteq U \times V$.
- We are asked if there is a perfect matching.
- A permutation π of $\{1,2, \ldots, n\}$ such that

$$
\left(u_{i}, v_{\pi(i)}\right) \in E
$$

for all $i \in\{1,2, \ldots, n\}$.

A Perfect Matching in a Bipartite Graph

Symbolic Determinants

- We are given a bipartite graph G.
- Construct the $n \times n$ matrix A^{G} whose (i, j) th entry $A_{i j}^{G}$ is a symbolic variable $x_{i j}$ if $\left(u_{i}, v_{j}\right) \in E$ and 0 otherwise, or

$$
A_{i j}^{G}= \begin{cases}x_{i j}, & \text { if }\left(u_{i}, v_{j}\right) \in E, \\ 0, & \text { othersie. }\end{cases}
$$

Symbolic Determinants (continued)

- The matrix for the bipartite graph G on p. 481 is ${ }^{\text {a }}$

$$
A^{G}=\left[\begin{array}{ccccc}
0 & 0 & x_{13} & x_{14} & 0 \tag{6}\\
0 & x_{22} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & x_{35} \\
x_{41} & 0 & x_{43} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{array}\right] .
$$

[^0]
Symbolic Determinants (concluded)

- The determinant of A^{G} is

$$
\begin{equation*}
\operatorname{det}\left(A^{G}\right)=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G} \tag{7}
\end{equation*}
$$

- π ranges over all permutations of n elements.
$-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.
- Equivalently, $\operatorname{sgn}(\pi)=1$ if the number of (i, j) s such that $i<j$ and $\pi(i)>\pi(j)$ is even. ${ }^{\text {a }}$
- $\operatorname{det}\left(A^{G}\right)$ contains n ! terms, many of which may be 0 s.
${ }^{\text {a Contributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, } 2008 . ~}$

Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G}$, note the following:
- Each summand corresponds to a possible perfect matching π.
- All of these summands $\prod_{i=1}^{n} A_{i, \pi(i)}^{G}$ are distinct monomials and will not cancel.
- $\operatorname{det}\left(A^{G}\right)$ is essentially an exhaustive enumeration. Proposition 58 (Edmonds (1967)) G has a perfect matching if and only if $\operatorname{det}\left(A^{G}\right)$ is not identically zero.

Perfect Matching and Determinant (p. 481)

Perfect Matching and Determinant (concluded)

- The matrix is (p. 483)

$$
A^{G}=\left[\begin{array}{ccccc}
0 & 0 & x_{13} & \boxed{x_{14}} & 0 \\
0 & \boxed{x_{22}} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & \begin{array}{|c}
x_{35} \\
x_{41} \\
0
\end{array} \\
x_{43} & x_{44} & 0 \\
\boxed{x_{51}} & 0 & 0 & 0 & x_{55}
\end{array}\right] .
$$

- $\operatorname{det}\left(A^{G}\right)=-x_{14} x_{22} x_{35} x_{43} x_{51}+x_{13} x_{22} x_{35} x_{44} x_{51}+$ $x_{14} x_{22} x_{31} x_{43} x_{55}-x_{13} x_{22} x_{31} x_{44} x_{55}$.
- Each nonzero term denotes a perfect matching, and vice versa.

How To Test If a Polynomial Is Identically Zero?

- $\operatorname{det}\left(A^{G}\right)$ is a polynomial in n^{2} variables.
- There are exponentially many terms in $\operatorname{det}\left(A^{G}\right)$.
- Expanding the determinant polynomial is not feasible.
- Too many terms.
- If $\operatorname{det}\left(A^{G}\right) \equiv 0$, then it remains zero if we substitute arbitrary integers for the variables $x_{11}, \ldots, x_{n n}$.
- When $\operatorname{det}\left(A^{G}\right) \not \equiv 0$, what is the likelihood of obtaining a zero?

Number of Roots of a Polynomial

Lemma 59 (Schwartz (1980)) Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^{+}$. Then the number of m-tuples

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\{0,1, \ldots, M-1\}^{m}
$$

such that $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=0$ is

$$
\leq m d M^{m-1} .
$$

- By induction on m (consult the textbook).

Density Attack

- The density of roots in the domain is at most

$$
\begin{equation*}
\frac{m d M^{m-1}}{M^{m}}=\frac{m d}{M} \tag{8}
\end{equation*}
$$

- So suppose $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
- Then a random

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\{0,1, \ldots, M-1\}^{m}
$$

has a probability of $\leq m d / M$ of being a root of p.

- Note that M is under our control!
- One can raise M to lower the error probability, e.g.

Density Attack (concluded)

Here is a sampling algorithm to test if $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
1: Choose i_{1}, \ldots, i_{m} from $\{0,1, \ldots, M-1\}$ randomly;
2: if $p\left(i_{1}, i_{2}, \ldots, i_{m}\right) \neq 0$ then
3: return " p is not identically zero";
4: else
5: return " p is (probably) identically zero";
6: end if

Analysis

- If $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \equiv 0$, the algorithm will always be correct as $p\left(i_{1}, i_{2}, \ldots, i_{m}\right)=0$.
- Suppose $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
- The algorithm will answer incorrectly with probability at most $m d / M$ by Eq. (8) on p. 490.
- We next return to the original problem of bipartite perfect matching.

A Randomized Bipartite Perfect Matching Algorithm ${ }^{\text {a }}$

1: Choose n^{2} integers $i_{11}, \ldots, i_{n n}$ from $\left\{0,1, \ldots, 2 n^{2}-1\right\}$ randomly; $\left\{\right.$ So $M=2 n^{2}$. $\}$
2: Calculate $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right)$ by Gaussian elimination;
3: if $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right) \neq 0$ then
4: return " G has a perfect matching";
5: else
6: return " G has no perfect matchings";
7: end if
${ }^{\text {a }}$ Lovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17. ."

Analysis

- If G has no perfect matchings, the algorithm will always be correct as $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right)=0$.
- Suppose G has a perfect matching.
- The algorithm will answer incorrectly with probability at most $m d / M=0.5$ with $m=n^{2}, d=1$ and $M=2 n^{2}$ in Eq. (8) on p. 490.
- Run the algorithm independently k times.
- Output " G has no perfect matchings" if and only if all say no.
- The error probability is now reduced to at most 2^{-k}.

Remarks ${ }^{\text {a }}$

- Note that we are calculating
prob[algorithm answers "no" $\mid G$ has no perfect matchings], prob[algorithm answers "yes" $\mid G$ has a perfect matching].
- We are not calculating ${ }^{\text {b }}$
$\operatorname{prob}[G$ has no perfect matchings \mid algorithm answers "no"], $\operatorname{prob}[G$ has a perfect matching|algorithm answers "yes" $]$.

[^1]
But How Large Can $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right) \mathrm{Be}$?

- It is at most

$$
n!\left(2 n^{2}\right)^{n}
$$

- Stirling's formula says $n!\sim \sqrt{2 \pi n}(n / e)^{n}$.
- Hence

$$
\log _{2} \operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right)=O\left(n \log _{2} n\right)
$$

bits are sufficient for representing the determinant.

- We skip the details about how to make sure that all intermediate results are of polynomial sizes.

An Intriguing Question ${ }^{\text {a }}$

- Is there an $\left(i_{11}, \ldots, i_{n n}\right)$ that will always give correct answers for the algorithm on p. 493?
- A theorem on p. 591 shows that such an $\left(i_{11}, \ldots, i_{n n}\right)$ exists!
- Whether it can be found efficiently is another matter.
- Once $\left(i_{11}, \ldots, i_{n n}\right)$ is available, the algorithm can be made deterministic.

[^2]
Randomization vs. Nondeterminism ${ }^{\text {a }}$

- What are the differences between randomized algorithms and nondeterministic algorithms?
- One can think of a randomized algorithm as a nondeterministic algorithm but with a probability associated with every guess/branch.
- So each computation path of a randomized algorithm has a probability associated with it.

[^3]
Monte Carlo Algorithms ${ }^{\text {a }}$

- The randomized bipartite perfect matching algorithm is called a Monte Carlo algorithm in the sense that
- If the algorithm finds that a matching exists, it is always correct (no false positives).
- If the algorithm answers in the negative, then it may make an error (false negatives).

[^4]
Monte Carlo Algorithms (continued)

- The algorithm makes a false negative with probability ≤ 0.5. $^{\text {a }}$
- Note this probability refers to ${ }^{\text {b }}$ prob[algorithm answers "no" $\mid G$ has a perfect matching] not $\operatorname{prob}[G$ has a perfect matching \mid algorithm answers "no"].

[^5]
Monte Carlo Algorithms (concluded)

- This probability o. 5 is not over the space of all graphs or determinants, but over the algorithm's own coin flips.
- It holds for any bipartite graph.

The Markov Inequality ${ }^{\text {a }}$

Lemma 60 Let x be a random variable taking nonnegative integer values. Then for any $k>0$,

$$
\operatorname{prob}[x \geq k E[x]] \leq 1 / k
$$

- Let p_{i} denote the probability that $x=i$.

$$
\begin{aligned}
E[x] & =\sum_{i} i p_{i}=\sum_{i<k E[x]} i p_{i}+\sum_{i \geq k E[x]} i p_{i} \\
& \geq \sum_{i \geq k E[x]} i p_{i} \geq k E[x] \sum_{i \geq k E[x]} p_{i} \\
& \geq k E[x] \times \operatorname{prob}[x \geq k E[x]] .
\end{aligned}
$$

[^6]
Andrei Andreyevich Markov (1856-1922)

An Application of Markov's Inequality

- Suppose algorithm C runs in expected time $T(n)$ and always gives the right answer.
- Consider an algorithm that runs C for time $k T(n)$ and rejects the input if C does not stop within the time bound.
- By Markov's inequality, this new algorithm runs in time $k T(n)$ and gives the wrong answer with probability $\leq 1 / k$.

An Application of Markov's Inequality (concluded)

- By running this algorithm m times (the total running time is $m k T(n)$), we reduce the error probability to $\leq k^{-m}$. ${ }^{\text {a }}$
- Suppose, instead, we run the algorithm for the same running time $m k T(n)$ once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1 /(m k)$.
- This is much worse than the previous algorithm's error probability of $\leq k^{-m}$ for the same amount of time.

[^7]
FSAT for k-SAT Formulas (p. 469)

- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a k-sAT formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

1: Start with an arbitrary truth assignment T;
2: for $i=1,2, \ldots, r$ do
3: \quad if $T \models \phi$ then
4: return " ϕ is satisfiable with T ";
5: else
6: \quad Let c be an unsatisfied clause in ϕ under T; All of its literals are false under T.\}
7: \quad Pick any x of these literals at random;
8: \quad Modify T to make x true;
9: end if
10: end for
11: return " ϕ is unsatisfiable";

3sAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3sat.
- In fact, it runs in expected $O\left((1.333 \cdots+\epsilon)^{n}\right)$ time with $r=3 n,{ }^{\text {a }}$ much better than $O\left(2^{n}\right) .{ }^{\text {b }}$
- We will show immediately that it works well for 2sat.
- The state of the art as of 2006 is expected $O\left(1.322^{n}\right)$ time for 3 sat and expected $O\left(1.474^{n}\right)$ time for 4 SAT. $^{\text {c }}$

[^8]
Random Walk Works for $2 \mathrm{SAT}^{\mathrm{a}}$

Theorem 61 Suppose the random walk algorithm with $r=2 n^{2}$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Assume our starting T differs from \hat{T} in i values.
- Their Hamming distance is i.
- Recall T is arbitrary.

[^9]
The Proof

- Let $t(i)$ denote the expected number of repetitions of the flipping step ${ }^{\text {a }}$ until a satisfying truth assignment is found.
- It can be shown that $t(i)$ is finite.
- $t(0)=0$ because it means that $T=\hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or any other satisfying truth assignment, then we need to flip the coin at least once.
- We flip a coin to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.
${ }^{\text {a }}$ That is, Statement 7.

The Proof (continued)

- So we have at least 0.5 chance of moving closer to \hat{T}.
- Thus

$$
t(i) \leq \frac{t(i-1)+t(i+1)}{2}+1
$$

for $0<i<n$.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$
t(n) \leq t(n-1)+1
$$

because at $i=n$, we can only decrease i.

The Proof (continued)

- Now, put the necessary relations together:

$$
\begin{align*}
t(0) & =0 \tag{9}\\
t(i) & \leq \frac{t(i-1)+t(i+1)}{2}+1, \quad 0<i<n \tag{10}\\
t(n) & \leq t(n-1)+1 \tag{11}
\end{align*}
$$

- Technically, this is a one-dimensional random walk with an absorbing barrier at $i=0$ and a reflecting barrier at $i=n$ (if we replace " \leq " with " $=$ "). ${ }^{\text {a }}$

[^10]
The Proof (continued)

- Add up the relations for $2 t(1), 2 t(2), 2 t(3), \ldots, 2 t(n-1), t(n)$ to obtain ${ }^{\text {a }}$

$$
\begin{array}{ll}
& 2 t(1)+2 t(2)+\cdots+2 t(n-1)+t(n) \\
\leq & t(0)+t(1)+2 t(2)+\cdots+2 t(n-2)+2 t(n-1)+t(n) \\
& +2(n-1)+1
\end{array}
$$

- Simplify it to yield

$$
\begin{equation*}
t(1) \leq 2 n-1 \tag{12}
\end{equation*}
$$

${ }^{\text {a }}$ Adding up the relations for $t(1), t(2), t(3), \ldots, t(n-1)$ will also work, thanks to Mr. Yen-Wu Ti (D91922010).

The Proof (continued)

- Add up the relations for $2 t(2), 2 t(3), \ldots, 2 t(n-1), t(n)$ to obtain

$$
\begin{array}{ll}
& 2 t(2)+\cdots+2 t(n-1)+t(n) \\
\leq & t(1)+t(2)+2 t(3)+\cdots+2 t(n-2)+2 t(n-1)+t(n) \\
& +2(n-2)+1
\end{array}
$$

- Simplify it to yield

$$
t(2) \leq t(1)+2 n-3 \leq 2 n-1+2 n-3=4 n-4
$$

by Eq. (12) on p. 514.

The Proof (continued)

- Continuing the process, we shall obtain

$$
t(i) \leq 2 i n-i^{2} .
$$

- The worst upper bound happens when $i=n$, in which case

$$
t(n) \leq n^{2}
$$

- We conclude that

$$
t(i) \leq t(n) \leq n^{2}
$$

for $0 \leq i \leq n$.

The Proof (concluded)

- So the expected number of steps is at most n^{2}.
- The algorithm picks $r=2 n^{2}$.
- This amounts to invoking the Markov inequality (p. 503) with $k=2$, resulting in a probability of 0.5 . $^{\text {a }}$
- The proof does not yield a polynomial bound for 3sat. ${ }^{\text {b }}$
${ }^{\text {a Recall p. } 505 .}$
${ }^{\mathrm{b}}$ Contributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Christos Papadimitriou (1949-)

Boosting the Performance

- We can pick $r=2 m n^{2}$ to have an error probability of

$$
\leq \frac{1}{2 m}
$$

by Markov's inequality.

- Alternatively, with the same running time, we can run the " $r=2 n^{2}$ " algorithm m times.
- The error probability is now reduced to

$$
\leq 2^{-m}
$$

Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k=2,3, \ldots, \sqrt{N}$.
- But it runs in $\Omega\left(2^{\left(\log _{2} N\right) / 2}\right)$ steps.

Primality Tests (concluded)

- Suppose $N=P Q$ is a product of 2 distinct primes.
- The probability of success of the density attack (p. 450) is

$$
\approx \frac{2}{\sqrt{N}}
$$

when $P \approx Q$.

- This probability is exponentially small in terms of the input length $\log _{2} N$.

The Fermat Test for Primality

Fermat's "little" theorem (p. 453) suggests the following primality test for any given number N :

1: Pick a number a randomly from $\{1,2, \ldots, N-1\}$;
2: if $a^{N-1} \neq 1 \bmod N$ then
3: return " N is composite";
4: else
5: return " N is a prime";
6: end if

The Fermat Test for Primality (concluded)

- Carmichael numbers are composite numbers that will pass the Fermat test for all $a \in\{1,2, \ldots, N-1\}$. ${ }^{\text {a }}$
- The Fermat test will return " N is a prime" for all Carmichael numbers N.
- Unfortunately, there are infinitely many Carmichael numbers. ${ }^{\text {b }}$
- In fact, the number of Carmichael numbers less than N exceeds $N^{2 / 7}$ for N large enough.
- So the Fermat test is an incorrect algorithm for primes.

```
    a}\mathrm{ armichael (1910). Lo (1994) mantions an investment strategy based on such numbers!
\({ }^{\mathrm{b}}\) Alford, Granville, and Pomerance (1992).
```


Square Roots Modulo a Prime

- Equation $x^{2}=a \bmod p$ has at most two (distinct) roots by Lemma 57 (p. 458).
- The roots are called square roots.
- Numbers a with square roots and $\operatorname{gcd}(a, p)=1$ are called quadratic residues.
* They are

$$
1^{2} \bmod p, 2^{2} \bmod p, \ldots,(p-1)^{2} \bmod p
$$

- We shall show that a number either has two roots or has none, and testing which is the case is trivial. ${ }^{\text {a }}$

[^11]
Euler's Test

Lemma 62 (Euler) Let p be an odd prime and $a \neq 0 \bmod p$.

1. If

$$
a^{(p-1) / 2}=1 \bmod p,
$$

then $x^{2}=a \bmod p$ has two roots .
2. If

$$
a^{(p-1) / 2} \neq 1 \bmod p,
$$

then

$$
a^{(p-1) / 2}=-1 \bmod p
$$

and $x^{2}=a \bmod p$ has no roots.

The Proof (continued)

- Let r be a primitive root of p.
- By Fermat's "little" theorem,

$$
r^{(p-1) / 2}
$$

is a square root of 1 .

- So

$$
r^{(p-1) / 2}=1 \text { or }-1 \bmod p .
$$

- But as r is a primitive root, $r^{(p-1) / 2} \neq 1 \bmod p$.
- Hence

$$
r^{(p-1) / 2}=-1 \bmod p
$$

The Proof (continued)

- Let $a=r^{k} \bmod p$ for some k.
- Then

$$
1=a^{(p-1) / 2}=r^{k(p-1) / 2}=\left[r^{(p-1) / 2}\right]^{k}=(-1)^{k} \bmod p
$$

- So k must be even.
- Suppose $a=r^{2 j}$ for some $1 \leq j \leq(p-1) / 2$.
- Then $a^{(p-1) / 2}=r^{j(p-1)}=1 \bmod p$, and a 's two distinct roots are $r^{j},-r^{j}\left(=r^{j+(p-1) / 2} \bmod p\right)$.
- If $r^{j}=-r^{j} \bmod p$, then $2 r^{j}=0 \bmod p$, which implies $r^{j}=0 \bmod p$, a contradiction.

The Proof (continued)

- As $1 \leq j \leq(p-1) / 2$, there are $(p-1) / 2$ such a 's.
- Each such a has 2 distinct square roots.
- The square roots of all the a 's are distinct.
- The square roots of different a 's must be different.
- Hence the set of square roots is $\{1,2, \ldots, p-1\}$.
- As a result, $a=r^{2 j}, 1 \leq j \leq(p-1) / 2$, exhaust all the quadratic residues.

The Proof (concluded)

- If $a=r^{2 j+1}$, then it has no roots because all the square roots have been taken.
- Now,

$$
a^{(p-1) / 2}=\left[r^{(p-1) / 2}\right]^{2 j+1}=(-1)^{2 j+1}=-1 \bmod p
$$

The Legendre Symbol ${ }^{\text {a }}$ and Quadratic Residuacity Test

- By Lemma $62\left(\right.$ p. 525) $a^{(p-1) / 2} \bmod p= \pm 1$ for $a \neq 0 \bmod p$.
- For odd prime p, define the Legendre symbol $(a \mid p)$ as
$(a \mid p)= \begin{cases}0 & \text { if } p \mid a, \\ 1 & \text { if } a \text { is a quadratic residue modulo } p, \\ -1 & \text { if } a \text { is a quadratic nonresidue modulo } p .\end{cases}$
- Euler's test (p. 525) implies

$$
a^{(p-1) / 2}=(a \mid p) \bmod p
$$

for any odd prime p and any integer a.

- Note that $(a b \mid p)=(a \mid p)(b \mid p)$.

[^12]
[^0]: ${ }^{\text {a }}$ The idea is similar to the Tanner graph in coding theory by Tanner (1981).

[^1]: ${ }^{\text {a }}$ Thanks to a lively class discussion on May 1, 2008.
 ${ }^{\text {b }}$ Numerical Recipes in C (1988), "[As] we already remarked, statistics is not a branch of mathematics!"

[^2]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 24, 2004.

[^3]: ${ }^{\text {a }}$ Contributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Alhasan (D01922034) on November 27, 2012.

[^4]: ${ }^{a}$ Metropolis and Ulam (1949).

[^5]: ${ }^{\text {a }}$ Equivalently, among the coin flip sequences, at most half of them lead to the wrong answer.
 ${ }^{\mathrm{b}}$ In general, prob[algorithm answers "no" | input is a "yes" instance].

[^6]: ${ }^{\text {a }}$ Andrei Andreyevich Markov (1856-1922).

[^7]: ${ }^{\text {a }}$ With the same input. Thanks to a question on December 7, 2010.

[^8]: ${ }^{a}$ Use this setting per run of the algorithm.
 bschöning (1999).
 ${ }^{\text {c }}$ Kwama and Tamaki (2004); Rolf (2006).

[^9]: ${ }^{\text {a }}$ Papadimitriou (1991).

[^10]: ${ }^{\text {a }}$ The proof in the textbook does exactly that. But a student pointed out difficulties with this proof technique on December 8, 2004. So our proof here uses the original inequalities.

[^11]: ${ }^{\text {a }}$ But no efficient deterministic general-purpose square-root-extracting algorithms are known yet.

[^12]: ${ }^{a}$ Andrien-Marie Legendre (1752-1833).

