Theory of Computation

Homework 5

Due: 2012/12/25

Problem 1 (Chernoff Bound) Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are independent random variables taking values 1 and 0 with probabilities p and $1-p$, respectively. Let $X=\sum_{i=1}^{n} X_{i}$. Then for $0 \leq \theta \leq 1, \operatorname{Pr}[X \leq(1-\theta) p n] \leq e^{-\frac{\theta^{2} p n}{2}}$.

Proof: Let t be any negative real number. By Markov inequality, $\operatorname{Pr}[X \leq$ $(1-\theta) p n]=\operatorname{Pr}\left[e^{t X} \geq e^{t(1-\theta) p n}\right] \leq e^{-t(1-\theta) p n} \mathbf{E}\left[e^{t X}\right]$. Since $X=\sum_{i=1}^{n} X_{i}$, $\mathbf{E}\left[e^{t X}\right]=\left(1+p\left(e^{t}-1\right)\right)^{n}$. Thus,

$$
\begin{align*}
\operatorname{Pr}[X \leq(1-\theta) p n] & \leq e^{-t(1-\theta) p n}\left(1+p\left(e^{t}-1\right)^{n}\right) \\
& \leq e^{-t(1-\theta) p n} e^{p n\left(e^{t}-1\right)} \tag{1}
\end{align*}
$$

Note that $(1+a)^{n} \leq e^{a n}$ for any $a>0$. Let $t=\ln (1-\theta)$. then

$$
\begin{equation*}
\operatorname{Pr}[X \leq(1-\theta) p n] \leq e^{-p n(\theta+(1-\theta) \ln (1-\theta))} \tag{2}
\end{equation*}
$$

The exponent expands to $-p n\left(\frac{\theta^{2}}{2}+\frac{\theta^{3}}{6}+\cdots\right)$ for $0 \leq \theta \leq 1$. Thus $\operatorname{Pr}[X \leq$ $(1-\theta) p n] \leq e^{\frac{-\theta^{2} p n}{2}}$.

Problem 2 Recall that EXP $=\operatorname{TIME}\left(2^{n^{k}}\right)$. Show that BPP \subseteq EXP.

Proof: It is known that PSPACE \subseteq EXP (p. 220 of the slides). Thus all we need to show is $\mathrm{BPP} \subseteq$ PSPACE. Let $L \in \mathrm{BPP}$, and consider a precise polynomial-time NTM N that decides L. Let $\epsilon \leq 1 / 4$ be the error probability, and $p(n)$ be the polynomial time complexity of N, where n is the length of the input. Without loss of generality, assume N has 2 options in each nondeterministic move. As in the textbook, in each run N makes $p(n)$ nondeterministic moves. Thus N has $2^{p(n)}$ possible computation paths each of length $p(n)$. Each computation path has the same probability of occurrence.

Construct a deterministic TM M which simulates N to generate all possible computation paths sequentially and reuses the space used by each previous path. M counts the the number $n_{\text {accept }}$ of the accepting paths. M accepts the input if $\frac{n_{\text {accept }}}{2^{p(n)}} \geq 3 / 4$; otherwise, M rejects. Thus N runs in polynomial space. Clearly, $\mathrm{BPP} \subseteq$ PSPACE and $\mathrm{BPP} \subseteq$ EXP is proved.

