Theory of Computation

Homework 4

Due: 2012/12/11
Problem 1 Show that BPP is closed under reductions. (For simplicity, we assume a reduction runs in polynomial time instead of log space.)

Proof: Let $L \in \mathrm{BPP}$ and $\epsilon=1 / 4$ such that there exists a polynomialtime NTM M which decides L with $\operatorname{Pr}[M(x)=1 \mid x \in L]>1-\epsilon$ and $\operatorname{Pr}[M(x)=0 \mid x \notin L]>1-\epsilon$ for every input x. Suppose that L^{\prime} is reducible to L via a reduction R, which runs in polynomial time. Note that for all x, $x \in L^{\prime}$ iff $R(x) \in L$. Then consider a polynomial-time NTM N which decides L^{\prime} as follows: on input x, N runs $M(R(x))$ for $k=\frac{4 \ln 2}{\epsilon^{2}}$ times to obtain k outputs $y_{1}, y_{2}, \ldots, y_{k} \in\{0,1\}$. If the strict majority of these outputs is 1 , then $N(x)=1$; otherwise, $N(x)=0$.

For the i-th run of $M(R(x))$, define the random variable $X_{i}=1$ if $y_{i}=I\left(x \in L^{\prime}\right)$, where I is the indicator function; otherwise, $X_{i}=0$. In other words, $X_{i}=1$ if and only if y_{i} is correct. Note that X_{i} s are independent random variables with $\operatorname{Pr}\left[X_{i}=1\right]>1-\epsilon$. By Corollary 69 (p. 550 in the slide), $\operatorname{Pr}\left[\sum_{i=1}^{k} X_{i} \leq \frac{k}{2}\right] \leq e^{-\frac{\epsilon^{2} k}{2}}=1 / 4$. This guarantees that $N(x)$ will output the correct answer with error probability $\leq 1 / 4$. Thus, $L^{\prime} \in \operatorname{BPP}$, and BPP is closed under reductions.

Problem 2 Show that RP is closed under intersection. (This means that $L_{1} \cap L_{2} \in R P$ if $L_{1} \in R P$ and $L_{2} \in \mathrm{RP}$.)

Proof: Let L_{1} and $L_{2} \in \mathrm{RP}$ be decided by polynomial-time Monte Carlo TMs N_{1} and N_{2}, respectively. Note that for $i=1,2$, and $\epsilon_{i}=1 / 2$, $\operatorname{Pr}\left[N_{i}(x)=1 \mid x \in L_{i}\right]>1-\epsilon_{i}$ and $\operatorname{Pr}\left[N_{i}(x)=1 \mid x \notin L_{i}\right]=0$.

To show that RP is closed under intersection, let TM N_{\cap} simulate N_{1} and N_{2} with independent coin flips on input x such that $N_{\cap}(x)=1$ if both machines N_{1} and N_{2} accept x; otherwise, $N_{\cap}(x)=0$. Now we prove that N_{\cap} decides $L_{1} \cap L_{2}$ with one-sided error probability $\epsilon=1-\left(1-\epsilon_{1}\right)\left(1-\epsilon_{2}\right)$. Note that $0<\epsilon \leq 1$. Assume $x \in L_{1} \cap L_{2}$. We have $\operatorname{Pr}\left[N_{\cap}(x)=1\right]=$ $\operatorname{Pr}\left[N_{1}(x)=1\right] \times \operatorname{Pr}\left[N_{2}(x)=1\right]>\left(1-\epsilon_{1}\right) \times\left(1-\epsilon_{2}\right)=1-\epsilon=1 / 4$ (recall that any constant probability will work for RP). Now assume $x \notin L_{1} \cap L_{2}$. This implies either $\operatorname{Pr}\left[N_{1}(x)=1\right]=0$ or $\operatorname{Pr}\left[N_{2}(x)=1\right]=0$ because $x \notin L_{1}$ or $x \notin L_{2}$. Thus $\operatorname{Pr}\left[N_{\cap}(x)=1\right]=1-\operatorname{Pr}\left[N_{\cap}(x)=0\right]=1-\operatorname{Pr}\left[N_{1}(x)=0\right.$ or $\left.\left.N_{2}(x)=0\right]=1-\left(1-\operatorname{Pr}\left[N_{1}(x)=1\right] \times \operatorname{Pr}\left[N_{2}(x)=1\right]\right)\right)=0$. Clearly, $L_{1} \cap L_{2}$ $\in \mathrm{RP}$, and we have shown that RP is closed under intersection.

