Theory of Computation

Homework 4

Due: 2012/12/11

Problem 1 Show that BPP is closed under reductions. (For simplicity, we assume a reduction runs in polynomial time instead of log space.)

Proof: Let $L \in BPP$ and $\epsilon = 1/4$ such that there exists a polynomialtime NTM M which decides L with $\mathbf{Pr}[M(x) = 1 \mid x \in L] > 1 - \epsilon$ and $\mathbf{Pr}[M(x) = 0 \mid x \notin L] > 1 - \epsilon$ for every input x. Suppose that L' is reducible to L via a reduction R, which runs in polynomial time. Note that for all x, $x \in L'$ iff $R(x) \in L$. Then consider a polynomial-time NTM N which decides L' as follows: on input x, N runs M(R(x)) for $k = \frac{4\ln 2}{\epsilon^2}$ times to obtain koutputs $y_1, y_2, \dots, y_k \in \{0, 1\}$. If the strict majority of these outputs is 1, then N(x) = 1; otherwise, N(x) = 0.

For the *i*-th run of M(R(x)), define the random variable $X_i = 1$ if $y_i = I(x \in L')$, where *I* is the indicator function; otherwise, $X_i = 0$. In other words, $X_i = 1$ if and only if y_i is correct. Note that X_i s are independent random variables with $\Pr[X_i = 1] > 1 - \epsilon$. By Corollary 69 (p. 550 in the slide), $\Pr[\sum_{i=1}^{k} X_i \leq \frac{k}{2}] \leq e^{-\frac{\epsilon^2 k}{2}} = 1/4$. This guarantees that N(x) will output the correct answer with error probability $\leq 1/4$. Thus, $L' \in \text{BPP}$, and BPP is closed under reductions.

Problem 2 Show that RP is closed under intersection. (This means that $L_1 \cap L_2 \in \text{RP}$ if $L_1 \in \text{RP}$ and $L_2 \in \text{RP}$.)

Proof: Let L_1 and $L_2 \in \mathbb{RP}$ be decided by polynomial-time Monte Carlo TMs N_1 and N_2 , respectively. Note that for i = 1, 2, and $\epsilon_i = 1/2$, $\mathbf{Pr}[N_i(x) = 1 \mid x \in L_i] > 1 - \epsilon_i$ and $\mathbf{Pr}[N_i(x) = 1 \mid x \notin L_i] = 0$.

To show that RP is closed under intersection, let TM N_{\cap} simulate N_1 and N_2 with independent coin flips on input x such that $N_{\cap}(x) = 1$ if both machines N_1 and N_2 accept x; otherwise, $N_{\cap}(x) = 0$. Now we prove that N_{\cap} decides $L_1 \cap L_2$ with one-sided error probability $\epsilon = 1 - (1 - \epsilon_1)(1 - \epsilon_2)$. Note that $0 < \epsilon \leq 1$. Assume $x \in L_1 \cap L_2$. We have $\mathbf{Pr}[N_{\cap}(x) = 1] =$ $\mathbf{Pr}[N_1(x) = 1] \times \mathbf{Pr}[N_2(x) = 1] > (1 - \epsilon_1) \times (1 - \epsilon_2) = 1 - \epsilon = 1/4$ (recall that any constant probability will work for RP). Now assume $x \notin L_1 \cap L_2$. This implies either $\mathbf{Pr}[N_1(x) = 1] = 0$ or $\mathbf{Pr}[N_2(x) = 1] = 0$ because $x \notin L_1$ or $x \notin L_2$. Thus $\mathbf{Pr}[N_{\cap}(x) = 1] = 1 - \mathbf{Pr}[N_{\cap}(x) = 0] = 1 - \mathbf{Pr}[N_1(x) = 0$ or $N_2(x) = 0] = 1 - (1 - \mathbf{Pr}[N_1(x) = 1] \times \mathbf{Pr}[N_2(x) = 1])) = 0$. Clearly, $L_1 \cap L_2$ \in RP, and we have shown that RP is closed under intersection.