How To Test If a Polynomial Is Identically Zero?

- $det(A^G)$ is a polynomial in n^2 variables.
- There are exponentially many terms in $det(A^G)$.
- Expanding the determinant polynomial is not feasible.
 Too many terms.
- If $det(A^G) \equiv 0$, then it remains zero if we substitute *arbitrary* integers for the variables x_{11}, \ldots, x_{nn} .
- But what is the likelihood of obtaining a zero when $det(A^G) \neq 0$?

Number of Roots of a Polynomial

Lemma 59 (Schwartz (1980)) Let $p(x_1, x_2, ..., x_m) \neq 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^+$. Then the number of m-tuples

 $(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$

such that $p(x_1, x_2, ..., x_m) = 0$ is

 $\leq m d M^{m-1}$

• By induction on m (consult the textbook).

Density Attack

• The density of roots in the domain is at most

$$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}.$$
(8)

- So suppose $p(x_1, x_2, \ldots, x_m) \neq 0$.
- Then a random

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

has a probability of $\leq md/M$ of being a root of p.

• Note that M is under our control!

- One can raise M to lower the error probability, e.g.

Density Attack (concluded)

Here is a sampling algorithm to test if $p(x_1, x_2, \ldots, x_m) \neq 0$.

- 1: Choose i_1, \ldots, i_m from $\{0, 1, \ldots, M-1\}$ randomly;
- 2: **if** $p(i_1, i_2, ..., i_m) \neq 0$ **then**
- 3: return "p is not identically zero";
- 4: **else**
- 5: **return** "p is (probably) identically zero";
- 6: end if

A Randomized Bipartite Perfect Matching Algorithm $^{\rm a}$

We now return to the original problem of bipartite perfect matching.

- 1: Choose n^2 integers $i_{11}, ..., i_{nn}$ from $\{0, 1, ..., 2n^2 1\}$ randomly; {So $M = 2n^2$.}
- 2: Calculate det $(A^G(i_{11},\ldots,i_{nn}))$ by Gaussian elimination;
- 3: **if** $det(A^G(i_{11}, ..., i_{nn})) \neq 0$ **then**
- 4: **return** "*G* has a perfect matching";

5: **else**

- 6: return "G has no perfect matchings";
- 7: end if

^aLovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17."

Analysis

- If G has no perfect matchings, the algorithm will always be correct as $det(A^G(i_{11}, \ldots, i_{nn})) = 0.$
- Suppose G has a perfect matching.
 - The algorithm will answer incorrectly with probability at most md/M = 0.5 with $m = n^2$, d = 1and $M = 2n^2$ in Eq. (8) on p. 473.
 - Run the algorithm *independently* k times.
 - Output "G has no perfect matchings" if and only if all say no.
 - The error probability is now reduced to at most 2^{-k} .

${\sf Remarks}^{\rm a}$

• Note that we are calculating

prob[algorithm answers "no" | G has no perfect matchings], prob[algorithm answers "yes" | G has a perfect matching].

• We are *not* calculating^b

prob[G has no perfect matchings | algorithm answers "no"], prob[G has a perfect matching | algorithm answers "yes"].

^aThanks to a lively class discussion on May 1, 2008. ^bNumerical Recipes in C (1988), "[As] we already remarked, statistics is not a branch of mathematics!" But How Large Can det $(A^G(i_{11}, \ldots, i_{nn}))$ Be?

• It is at most

$$n! \left(2n^2\right)^n$$
.

- Stirling's formula says $n! \sim \sqrt{2\pi n} (n/e)^n$.
- Hence

$$\log_2 \det(A^G(i_{11},\ldots,i_{nn})) = O(n\log_2 n)$$

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all *intermediate* results are of polynomial sizes.

An Intriguing $\mbox{Question}^{\rm a}$

- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for the algorithm on p. 475?
- A theorem on p. 571 shows that such an (i_{11}, \ldots, i_{nn}) exists!
 - Whether it can be found efficiently is another matter.
- Once (i_{11}, \ldots, i_{nn}) is available, the algorithm can be made deterministic.

^aThanks to a lively class discussion on November 24, 2004.

Randomization vs. Nondeterminism $^{\rm a}$

- What are the differences between randomized algorithms and nondeterministic algorithms?
- One can think of a randomized algorithm as a nondeterministic algorithm but with a probability associated with every guess/branch.
- So each computation path of a randomized algorithm has a probability associated with it.

^aContributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Alhasan (D01922034) on November 27, 2012.

Monte Carlo Algorithms $^{\rm a}$

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no false positives).
 - If the algorithm answers in the negative, then it may make an error (false negatives).

^aMetropolis and Ulam (1949).

Monte Carlo Algorithms (concluded)

• The algorithm makes a false negative with probability $\leq 0.5.^{\rm a}$

- Note this probability refers to^b

prob[algorithm answers "no" |G has a perfect matching] not

 $\operatorname{prob}[G \text{ has a perfect matching} | \operatorname{algorithm answers "no"}].$

• This probability is *not* over the space of all graphs or determinants, but *over* the algorithm's own coin flips.

- It holds for any bipartite graph.

^aEquivalently, among the coin flip sequences, at most half of them lead to the wrong answer.

^bIn general, prob[algorithm answers "no" | input is a "yes" instance].

The Markov Inequality^a

Lemma 60 Let x be a random variable taking nonnegative integer values. Then for any k > 0,

 $\operatorname{prob}[x \ge kE[x]] \le 1/k.$

• Let p_i denote the probability that x = i.

$$E[x] = \sum_{i} ip_{i}$$

=
$$\sum_{i < kE[x]} ip_{i} + \sum_{i \ge kE[x]} ip_{i}$$

$$\ge kE[x] \times \operatorname{prob}[x \ge kE[x]]$$

^aAndrei Andreyevich Markov (1856–1922).

•

Andrei Andreyevich Markov (1856–1922)

An Application of Markov's Inequality

- Suppose algorithm C runs in expected time T(n) and always gives the right answer.
- Consider an algorithm that runs C for time kT(n) and rejects the input if C does not stop within the time bound.
- By Markov's inequality, this new algorithm runs in time kT(n) and gives the wrong answer with probability ≤ 1/k.

An Application of Markov's Inequality (concluded)

- By running this algorithm m times (the total running time is mkT(n)), we reduce the error probability to $\leq k^{-m}$.^a
- Suppose, instead, we run the algorithm for the same running time mkT(n) once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1/(mk)$.
- This is much worse than the previous algorithm's error probability of $\leq k^{-m}$ for the same amount of time.

^aWith the same input. Thanks to a question on December 7, 2010.

FSAT for k-SAT Formulas (p. 453)

- Let $\phi(x_1, x_2, \dots, x_n)$ be a k-SAT formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

1: Start with an *arbitrary* truth assignment T;

2: for
$$i = 1, 2, ..., r$$
 do

- 3: **if** $T \models \phi$ **then**
- 4: **return** " ϕ is satisfiable with T";
- 5: **else**
- 6: Let c be an unsatisfied clause in ϕ under T; {All of its literals are false under T.}
- 7: Pick any x of these literals *at random*;
- 8: Modify T to make x true;

```
9: end if
```

```
10: end for
```

```
11: return "\phi is unsatisfiable";
```

3SAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3SAT.
 - In fact, it runs in expected $O((1.333\cdots + \epsilon)^n)$ time with r = 3n,^a much better than $O(2^n)$.^b
- We will show immediately that it works well for 2SAT.
- The state of the art as of 2006 is expected $O(1.322^n)$ time for 3SAT and expected $O(1.474^n)$ time for 4SAT.^c

^aUse this setting per run of the algorithm. ^bSchöning (1999). ^cKwama and Tamaki (2004); Rolf (2006).

Random Walk Works for $2 \ensuremath{\mathrm{SAT}}^a$

Theorem 61 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Assume our starting T differs from \hat{T} in *i* values.

- Their Hamming distance is i.

- Recall T is arbitrary.

^aPapadimitriou (1991).

The Proof

- Let t(i) denote the expected number of repetitions of the flipping step^a until a satisfying truth assignment is found.
- It can be shown that t(i) is finite.
- t(0) = 0 because it means that $T = \hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or any other satisfying truth assignment, then we need to flip the coin at least once.
- We flip a coin to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.

^aThat is, Statement 7.

- So we have at least 0.5 chance of moving closer to \hat{T} .
- Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

for 0 < i < n.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

• Now, put the necessary relations together:

$$\begin{aligned} t(0) &= 0, \quad (9) \\ t(i) &\leq \frac{t(i-1)+t(i+1)}{2} + 1, \quad 0 < i < n, \quad (10) \\ t(n) &\leq t(n-1) + 1. \quad (11) \end{aligned}$$

• Technically, this is a one-dimensional random walk with an absorbing barrier at i = 0 and a reflecting barrier at i = n (if we replace " \leq " with "=").^a

^aThe proof in the textbook does exactly that. But a student pointed out difficulties with this proof technique on December 8, 2004. So our proof here uses the original inequalities.

- Add up the relations for $2t(1), 2t(2), 2t(3), \dots, 2t(n-1), t(n) \text{ to obtain}^{a}$ $2t(1) + 2t(2) + \dots + 2t(n-1) + t(n)$ $\leq t(0) + t(1) + 2t(2) + \dots + 2t(n-2) + 2t(n-1) + t(n) + 2(n-1) + 1.$
- Simplify it to yield

$$t(1) \le 2n - 1.$$
 (12)

^aAdding up the relations for $t(1), t(2), t(3), \ldots, t(n-1)$ will also work, thanks to Mr. Yen-Wu Ti (D91922010).

• Add up the relations for $2t(2), 2t(3), \dots, 2t(n-1), t(n)$ to obtain

$$2t(2) + \dots + 2t(n-1) + t(n)$$

$$\leq t(1) + t(2) + 2t(3) + \dots + 2t(n-2) + 2t(n-1) + t(n+2) + 2(n-2) + 1.$$

• Simplify it to yield

$$t(2) \le t(1) + 2n - 3 \le 2n - 1 + 2n - 3 = 4n - 4$$

by Eq. (12) on p. 495.

• Continuing the process, we shall obtain

$$t(i) \le 2in - i^2.$$

• The worst upper bound happens when i = n, in which case

$$t(n) \le n^2.$$

• We conclude that

$$t(i) \le t(n) \le n^2$$

for $0 \leq i \leq n$.

The Proof (concluded)

- So the expected number of steps is at most n^2 .
- The algorithm picks $r = 2n^2$.

- This amounts to invoking the Markov inequality (p. 484) with k = 2, resulting in a probability of 0.5.^a

• The proof does *not* yield a polynomial bound for 3SAT.^b

^aRecall p. 486.

^bContributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Christos Papadimitriou (1949–)

Boosting the Performance

• We can pick $r = 2mn^2$ to have an error probability of

$$\leq \frac{1}{2m}$$

by Markov's inequality.

- Alternatively, with the same running time, we can run the " $r = 2n^{2}$ " algorithm m times.
- The error probability is now reduced to

$$\leq 2^{-m}.$$

Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k = 2, 3, ..., \sqrt{N}$.
- But it runs in $\Omega(2^{(\log_2 N)/2})$ steps.

Primality Tests (concluded)

- Suppose N = PQ is a product of 2 distinct primes.
- The probability of success of the density attack (p. 434) is

$$\approx \frac{2}{\sqrt{N}}$$

when $P \approx Q$.

• This probability is exponentially small in terms of the input length $\log_2 N$.

The Fermat Test for Primality

Fermat's "little" theorem (p. 437) suggests the following primality test for any given number N:

- 1: Pick a number a randomly from $\{1, 2, \ldots, N-1\}$;
- 2: if $a^{N-1} \neq 1 \mod N$ then
- 3: **return** "*N* is composite";

4: **else**

5: return "N is a prime";

6: **end if**

The Fermat Test for Primality (concluded)

- Carmichael numbers are composite numbers that will pass the Fermat test for all $a \in \{1, 2, ..., N-1\}$.^a
 - The Fermat test will return "N is a prime" for all Carmichael numbers N.
- Unfortunately, there are infinitely many Carmichael numbers.^b
- In fact, the number of Carmichael numbers less than N exceeds $N^{2/7}$ for N large enough.
- So the Fermat test is an incorrect algorithm for PRIMES.

^aCarmichael (1910). ^bAlford, Granville, and Pomerance (1992).

Square Roots Modulo a Prime

- Equation $x^2 = a \mod p$ has at most two (distinct) roots by Lemma 57 (p. 442).
 - The roots are called **square roots**.
 - Numbers a with square roots and gcd(a, p) = 1 are called **quadratic residues**.

* They are

$$1^2 \mod p, 2^2 \mod p, \dots, (p-1)^2 \mod p.$$

• We shall show that a number either has two roots or has none, and testing which is the case is trivial.^a

^aBut no efficient *deterministic* general-purpose square-root-extracting algorithms are known yet.

Euler's Test

Lemma 62 (Euler) Let p be an odd prime and $a \neq 0 \mod p$.

If

 a^{(p-1)/2} = 1 mod p,
 then x² = a mod p has two roots.

 If

$$a^{(p-1)/2} \neq 1 \bmod p,$$

then

$$a^{(p-1)/2} = -1 \mod p$$

and $x^2 = a \mod p$ has no roots.

- Let r be a primitive root of p.
- By Fermat's "little" theorem,

 $r^{(p-1)/2}$

is a square root of 1.

• So

$$r^{(p-1)/2} = 1 \text{ or } -1 \mod p.$$

• But as r is a primitive root, $r^{(p-1)/2} \neq 1 \mod p$.

• Hence

$$r^{(p-1)/2} = -1 \mod p.$$

- Let $a = r^k \mod p$ for some k.
- Then

$$1 = a^{(p-1)/2} = r^{k(p-1)/2} = \left[r^{(p-1)/2} \right]^k = (-1)^k \mod p.$$

- So k must be even.
- Suppose $a = r^{2j}$ for some $1 \le j \le (p-1)/2$.
- Then $a^{(p-1)/2} = r^{j(p-1)} = 1 \mod p$, and a's two distinct roots are $r^j, -r^j (= r^{j+(p-1)/2} \mod p)$.
 - If $r^j = -r^j \mod p$, then $2r^j = 0 \mod p$, which implies $r^j = 0 \mod p$, a contradiction.

- As $1 \le j \le (p-1)/2$, there are (p-1)/2 such *a*'s.
- Each such a has 2 distinct square roots.
- The square roots of all the *a*'s are distinct.
 - The square roots of different *a*'s must be different.
- Hence the set of square roots is $\{1, 2, \ldots, p-1\}$.
- As a result, $a = r^{2j}$, $1 \le j \le (p-1)/2$, exhaust all the quadratic residues.

The Proof (concluded)

- If $a = r^{2j+1}$, then it has no roots because all the square roots have been taken.
- Now,

$$a^{(p-1)/2} = \left[r^{(p-1)/2}\right]^{2j+1} = (-1)^{2j+1} = -1 \mod p.$$

The Legendre Symbol $^{\rm a}$ and Quadratic Residuacity Test

- By Lemma 62 (p. 506) $a^{(p-1)/2} \mod p = \pm 1$ for $a \neq 0 \mod p$.
- For odd prime p, define the **Legendre symbol** $(a \mid p)$ as

$$(a \mid p) = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p \end{cases}$$

• Euler's test (p. 506) implies

$$a^{(p-1)/2} = (a \mid p) \mod p$$

for any odd prime p and any integer a.

• Note that (ab|p) = (a|p)(b|p).

^aAndrien-Marie Legendre (1752–1833).

Gauss's Lemma

Lemma 63 (Gauss) Let p and q be two odd primes. Then $(q|p) = (-1)^m$, where m is the number of residues in $R = \{ iq \mod p : 1 \le i \le (p-1)/2 \}$ that are greater than (p-1)/2.

- All residues in R are distinct.
 - If $iq = jq \mod p$, then p|(j-i)q or p|q.
 - But neither is possible.
- No two elements of R add up to p.
 - If $iq + jq = 0 \mod p$, then p|(i+j) or p|q.
 - But neither is possible.

• Replace each of the *m* elements $a \in R$ such that a > (p-1)/2 by p-a.

- This is equivalent to performing $-a \mod p$.

- Call the resulting set of residues R'.
- All numbers in R' are at most (p-1)/2.
- In fact, $R' = \{1, 2, \dots, (p-1)/2\}$ (see illustration next page).
 - Otherwise, two elements of R would add up to p, which has been shown to be impossible.

The Proof (concluded)

- Alternatively, $R' = \{\pm iq \mod p : 1 \le i \le (p-1)/2\},\$ where exactly *m* of the elements have the minus sign.
- Take the product of all elements in the two representations of R'.
- So

$$[(p-1)/2]! = (-1)^m q^{(p-1)/2} [(p-1)/2]! \mod p.$$

• Because gcd([(p-1)/2]!, p) = 1, the above implies $1 = (-1)^m q^{(p-1)/2} \mod p.$

Legendre's Law of Quadratic Reciprocity $^{\rm a}$

- Let p and q be two odd primes.
- The next result says their Legendre symbols are distinct if and only if both numbers are 3 mod 4.

Lemma 64 (Legendre (1785), Gauss)

$$(p|q)(q|p) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

^aFirst stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 6 different proofs during his life. The 152nd proof appeared in 1963.

- Sum the elements of R' in the previous proof in mod 2.
- On one hand, this is just $\sum_{i=1}^{(p-1)/2} i \mod 2$.
- On the other hand, the sum equals

$$mp + \sum_{i=1}^{(p-1)/2} \left(iq - p \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2$$
$$= mp + \left(q \sum_{i=1}^{(p-1)/2} i - p \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2.$$

-m of the $iq \mod p$ are replaced by $p - iq \mod p$.

- But signs are irrelevant under mod 2.
- -m is as in Lemma 63 (p. 512).

• Ignore odd multipliers to make the sum equal

$$m + \left(\sum_{i=1}^{(p-1)/2} i - \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor\right) \mod 2.$$

• Equate the above with $\sum_{i=1}^{(p-1)/2} i \mod 2$ to obtain

$$m = \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \mod 2.$$

The Proof (concluded)

• $\sum_{i=1}^{(p-1)/2} \lfloor \frac{iq}{p} \rfloor$ is the number of integral points below the line

$$y = (q/p) x$$

for $1 \le x \le (p-1)/2$.

- Gauss's lemma (p. 512) says $(q|p) = (-1)^m$.
- Repeat the proof with p and q reversed.
- Then $(p|q) = (-1)^{m'}$, where m' is the number of integral points *above* the line y = (q/p) x for $1 \le y \le (q-1)/2$.
- As a result, $(p|q)(q|p) = (-1)^{m+m'}$.
- But m + m' is the total number of integral points in the $[1, \frac{p-1}{2}] \times [1, \frac{q-1}{2}]$ rectangle, which is $\frac{p-1}{2} \frac{q-1}{2}$.

The Jacobi Symbol^a

- The Legendre symbol only works for odd *prime* moduli.
- The **Jacobi symbol** $(a \mid m)$ extends it to cases where m is not prime.
- Let $m = p_1 p_2 \cdots p_k$ be the prime factorization of m.
- When m > 1 is odd and gcd(a, m) = 1, then

$$(a|m) = \prod_{i=1}^{k} (a | p_i).$$

– Note that the Jacobi symbol equals ± 1 .

- It reduces to the Legendre symbol when m is a prime.

• Define $(a \mid 1) = 1$.

^aCarl Jacobi (1804–1851).

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for arguments for which it is defined.

1.
$$(ab | m) = (a | m)(b | m).$$

2.
$$(a \mid m_1 m_2) = (a \mid m_1)(a \mid m_2).$$

3. If
$$a = b \mod m$$
, then $(a \mid m) = (b \mid m)$.

4.
$$(-1 | m) = (-1)^{(m-1)/2}$$
 (by Lemma 63 on p. 512).

5.
$$(2 \mid m) = (-1)^{(m^2 - 1)/8}$$
.^a

6. If a and m are both odd, then

$$(a \mid m)(m \mid a) = (-1)^{(a-1)(m-1)/4}.$$

^aBy Lemma 63 (p. 512) and some parity arguments.

Properties of the Jacobi Symbol (concluded)

- These properties allow us to calculate the Jacobi symbol *without* factorization.
- This situation is similar to the Euclidean algorithm.
- Note also that $(a \mid m) = 1/(a \mid m)$ because $(a \mid m) = \pm 1$.^a

^aContributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on December 6, 2011.

A Result Generalizing Proposition 10.3 in the Textbook

Theorem 65 The group of set $\Phi(n)$ under multiplication mod n has a primitive root if and only if n is either 1, 2, 4, p^k , or $2p^k$ for some nonnegative integer k and and odd prime p.

This result is essential in the proof of the next lemma.

The Jacobi Symbol and Primality Test^a

Lemma 66 If $(M|N) = M^{(N-1)/2} \mod N$ for all $M \in \Phi(N)$, then N is a prime. (Assume N is odd.)

- Assume N = mp, where p is an odd prime, gcd(m, p) = 1, and m > 1 (not necessarily prime).
- Let $r \in \Phi(p)$ such that (r | p) = -1.
- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

 $M = r \mod p,$ $M = 1 \mod m.$

^aMr. Clement Hsiao (B4506061, R88526067) pointed out that the textbook's proof for Lemma 11.8 is incorrect in January 1999 while he was a senior.

• By the hypothesis,

$$M^{(N-1)/2} = (M \mid N) = (M \mid p)(M \mid m) = -1 \mod N.$$

• Hence

$$M^{(N-1)/2} = -1 \mod m.$$

• But because $M = 1 \mod m$,

$$M^{(N-1)/2} = 1 \bmod m,$$

a contradiction.

- Second, assume that $N = p^a$, where p is an odd prime and $a \ge 2$.
- By Theorem 65 (p. 525), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

• As $r \in \Phi(N)$ (prove it), we have

 $r^{N-1} = 1 \bmod N.$

• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$, $p^{a-1}(p-1) \mid (N-1),$

which implies that $p \mid (N-1)$.

• But this is impossible given that $p \mid N$.

- Third, assume that $N = mp^a$, where p is an odd prime, gcd(m, p) = 1, m > 1 (not necessarily prime), and a is even.
- The proof mimics that of the second case.
- By Theorem 65 (p. 525), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

• In particular,

$$M^{N-1} = 1 \bmod p^a \tag{13}$$

for all $M \in \Phi(N)$.

• The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

 $M = r \mod p^a,$ $M = 1 \mod m.$

• Because $M = r \mod p^a$ and Eq. (13),

$$r^{N-1} = 1 \bmod p^a.$$

The Proof (concluded)

• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$,

$$p^{a-1}(p-1) \,|\, (N-1),$$

which implies that $p \mid (N-1)$.

• But this is impossible given that $p \mid N$.