
Related Problems

• We are given a family F = {S1, S2, . . . , Sn} of subsets of

a finite set U and a budget B.

• set covering asks if there exists a set of B sets in F

whose union is U .

• set packing asks if there are B disjoint sets in F .

• Assume |U | = 3m for some m ∈ N and |Si| = 3 for all i.

• exact cover by 3-sets asks if there are m sets in F

that are disjoint and have U as their union.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 375

SET COVERING SET PACKING

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 376

Related Problems (concluded)

Corollary 45 (Karp (1972)) set covering, set

packing, and exact cover by 3-sets are all

NP-complete.

• set covering can be used to prove that the influence

maximization problem in social networks is

NP-complete.a

aKempe, Kleinberg, and Tardos (2003).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 377

The knapsack Problem

• There is a set of n items.

• Item i has value vi ∈ Z+ and weight wi ∈ Z+.

• We are given K ∈ Z+ and W ∈ Z+.

• knapsack asks if there exists a subset S ⊆ {1, 2, . . . , n}
such that

∑
i∈S wi ≤ W and

∑
i∈S vi ≥ K.

– We want to achieve the maximum satisfaction within

the budget.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 378

knapsack Is NP-Completea

• knapsack ∈ NP: Guess an S and verify the constraints.

• We shall reduce exact cover by 3-sets to knapsack,

in which vi = wi for all i and K = W .

• knapsack now asks if a subset of {v1, v2, . . . , vn} adds

up to exactly K.

– Picture yourself as a radio DJ.

aKarp (1972).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 379

The Proof (continued)

• The primary differences between the two problems are:a

– Sets vs. numbers.

– Union vs. addition.

• We are given a family F = {S1, S2, . . . , Sn} of size-3

subsets of U = {1, 2, . . . , 3m}.

• exact cover by 3-sets asks if there are m disjoint

sets in F that cover the set U .

aThanks to a lively class discussion on November 16, 2010.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 380

The Proof (continued)

• Think of a set as a bit vector in {0, 1}3m.

– 001100010 means the set {3, 4, 8}.
– 110010000 means the set {1, 2, 5}.

• Our goal is
3m︷ ︸︸ ︷

11 · · · 1 .

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 381

The Proof (continued)

• A bit vector can also be seen as a binary number.

• Set union resembles addition:

001100010

+ 110010000

111110010

which denotes the set {1, 2, 3, 4, 5, 8}, as desired.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 382

The Proof (continued)

• Trouble occurs when there is carry:

010000000

+ 010000000

100000000

which denotes the set {1}, not the desired {2}.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 383

The Proof (continued)

• Or consider

001100010

+ 001110000

011010010

which denotes the set {2, 3, 5, 8}, not the desired

{3, 4, 5, 8}.a

aCorrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 384

The Proof (continued)

• Carry may also lead to a situation where we obtain our

solution 11 · · · 1 with more than m sets in F .

• For example,

000100010

001110000

101100000

+ 000001101

111111111

• But the true answer, {1, 3, 4, 5, 6, 7, 8, 9}, is not an exact

cover.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 385

The Proof (continued)

• And it uses 4 sets instead of the required m = 3.a

• To fix this problem, we enlarge the base just enough so

that there are no carries.b

• Because there are n vectors in total, we change the base

from 2 to n+ 1.

aThanks to a lively class discussion on November 20, 2002.
bYou cannot map ∪ to ∨ because knapsack requires +.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 386

The Proof (continued)

• Set vi to be the integer corresponding to the bit vector

encoding Si in base n+ 1:

vi =
∑
j∈Si

(n+ 1)3m−j (3)

• Now in base n+ 1, if there is a set S such that∑
i∈S vi =

3m︷ ︸︸ ︷
11 · · · 1, then every bit position must be

contributed by exactly one vi and |S| = m.

• Finally, set

K =
3m−1∑
j=0

(n+ 1)j =

3m︷ ︸︸ ︷
11 · · · 1 (base n+ 1).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 387

The Proof (continued)

• For example, the case on p. 385 becomes

000100010

001110000

101100000

+ 000001101

102311111

in base 6.

• It does not meet the goal.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 388

The Proof (continued)

• Suppose F admits an exact cover, say {S1, S2, . . . , Sm}.

• Then picking S = {1, 2, . . . ,m} clearly results in

v1 + v2 + · · ·+ vm =

3m︷ ︸︸ ︷
11 · · · 1 .

– It is important to note that the meaning of addition

(+) is independent of the base.a

– It is just regular addition.

– But an Si may give rise to different integer vi’s in

Eq. (3) on p. 387 under different bases.

aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3,

2004.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 389

The Proof (concluded)

• On the other hand, suppose there exists an S such that∑
i∈S vi =

3m︷ ︸︸ ︷
11 · · · 1 in base n+ 1.

• The no-carry property implies that |S| = m and

{Si : i ∈ S} is an exact cover.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 390

An Example

• Let m = 3, U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

S1 = {1, 3, 4},

S2 = {2, 3, 4},

S3 = {2, 5, 6},

S4 = {6, 7, 8},

S5 = {7, 8, 9}.

• Note that n = 5, as there are 5 Si’s.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 391

An Example (continued)

• Our reduction produces

K =
3×3−1∑
j=0

6j =

3×3︷ ︸︸ ︷
11 · · · 1 (base 6) = 2015539,

v1 = 101100000 = 1734048,

v2 = 011100000 = 334368,

v3 = 010011000 = 281448,

v4 = 000001110 = 258,

v5 = 000000111 = 43.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 392

An Example (concluded)

• Note v1 + v3 + v5 = K because

101100000

010011000

+ 000000111

111111111

• Indeed, S1 ∪ S3 ∪ S5 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, an exact

cover by 3-sets.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 393

bin packing

• We are given N positive integers a1, a2, . . . , aN , an

integer C (the capacity), and an integer B (the number

of bins).

• bin packing asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.

• Think of packing bags at the check-out counter.

Theorem 46 bin packing is NP-complete.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 394

integer programming

• integer programming asks whether a system of linear

inequalities with integer coefficients has an integer

solution.

• In contrast, linear programming asks whether a

system of linear inequalities with integer coefficients has

a rational solution.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 395

integer programming Is NP-Completea

• set covering can be expressed by the inequalities

Ax ≥ 1⃗,
∑n

i=1 xi ≤ B, 0 ≤ xi ≤ 1, where

– xi is one if and only if Si is in the cover.

– A is the matrix whose columns are the bit vectors of

the sets S1, S2,

– 1⃗ is the vector of 1s.

– The operations in Ax are standard matrix operations.

• This shows integer programming is NP-hard.

• Many NP-complete problems can be expressed as an

integer programming problem.

aKarp (1972).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 396

Easier or Harder?a

• Adding restrictions on the allowable problem instances

will not make a problem harder.

– We are now solving a subset of problem instances or

special cases.

– The independent set proof (p. 328) and the

knapsack proof (p. 379).

– sat to 2sat (easier by p. 311).

– circuit value to monotone circuit value

(equally hard by p. 284).

aThanks to a lively class discussion on October 29, 2003.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 397

Easier or Harder? (concluded)

• Adding restrictions on the allowable solutions may make

a problem harder, equally hard, or easier.

• It is problem dependent.

– min cut to bisection width (harder by p. 355).

– linear programming to integer programming

(harder by p. 395).

– sat to naesat (equally hard by p. 322) and max

cut to max bisection (equally hard by p. 353).

– 3-coloring to 2-coloring (easier by p. 363).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 398

coNP and Function Problems

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 399

coNP

• NP is the class of problems that have succinct

certificates (recall Proposition 35 on p. 296).

• By definition, coNP is the class of problems whose

complement is in NP.

• coNP is therefore the class of problems that have

succinct disqualifications:

– A “no” instance of a problem in coNP possesses a

short proof of its being a “no” instance.

– Only “no” instances have such proofs.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 400

coNP (continued)

• Suppose L is a coNP problem.

• There exists a polynomial-time nondeterministic

algorithm M such that:

– If x ∈ L, then M(x) = “yes” for all computation

paths.

– If x ̸∈ L, then M(x) = “no” for some computation

path.

• Note that if we swap “yes” and “no” of M , the new

algorithm M ′ decides L̄ ∈ NP in the classic sense (p. 88).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 401

\HV

[�∉�/

\HV

QR
\HV

QR

\HV

[�∈�/

\HV

\HV
\HV

\HV

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 402

coNP (concluded)

• Clearly P ⊆ coNP.

• It is not known if

P = NP ∩ coNP.

– Contrast this with

R = RE ∩ coRE

(see Proposition 11 on p. 148).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 403

Some coNP Problems

• validity ∈ coNP.

– If ϕ is not valid, it can be disqualified very succinctly:

a truth assignment that does not satisfy it.

• sat complement ∈ coNP.

– sat complement is the complement of sat.

– The disqualification is a truth assignment that

satisfies it.

• hamiltonian path complement ∈ coNP.

– The disqualification is a Hamiltonian path.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 404

Some coNP Problems (concluded)

• optimal tsp (d) ∈ coNP.

– optimal tsp (d) asks if the optimal tour has a total

distance of B, where B is an input.a

– The disqualification is a tour with a length < B.

aDefined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 405

A Nondeterministic Algorithm for sat complement

ϕ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {0, 1}; {Nondeterministic choice.}
3: end for

4: {Verification:}
5: if ϕ(x1, x2, . . . , xn) = 1 then

6: “no”;

7: else

8: “yes”;

9: end if

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 406

Analysis

• The algorithm decides language {ϕ : ϕ is unsatisfiable}.
– The computation tree is a complete binary tree of

depth n.

– Every computation path corresponds to a particular

truth assignment out of 2n.

– ϕ is unsatisfiable iff every truth assignment falsifies ϕ.

– But every truth assignment falsifies ϕ iff every

computation path results in “yes.”

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 407

An Alternative Characterization of coNP

Proposition 47 Let L ⊆ Σ∗ be a language. Then L ∈ coNP

if and only if there is a polynomially decidable and

polynomially balanced relation R such that

L = {x : ∀y (x, y) ∈ R}.

(As on p. 295, we assume | y | ≤ |x |k for some k.)

• L̄ = {x : ∃y (x, y) ∈ ¬R}.

• Because ¬R remains polynomially balanced, L̄ ∈ NP by

Proposition 35 (p. 296).

• Hence L ∈ coNP by definition.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 408

coNP-Completeness

Proposition 48 L is NP-complete if and only if its

complement L̄ = Σ∗ − L is coNP-complete.

Proof (⇒; the ⇐ part is symmetric)

• Let L̄′ be any coNP language.

• Hence L′ ∈ NP.

• Let R be the reduction from L′ to L.

• So x ∈ L′ if and only if R(x) ∈ L.

• Equivalently, x ̸∈ L′ if and only if R(x) ̸∈ L (the law of

transposition).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 409

coNP Completeness (concluded)

• So x ∈ L̄′ if and only if R(x) ∈ L̄.

• R is a reduction from L̄′ to L̄.

• But L̄ ∈ coNP.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 410

Some coNP-Complete Problems

• sat complement is coNP-complete.

• validity is coNP-complete.

– ϕ is valid if and only if ¬ϕ is not satisfiable.

– The reduction from sat complement to validity

is hence easy.

• hamiltonian path complement is coNP-complete.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 411

Possible Relations between P, NP, coNP

1. P = NP = coNP.

2. NP = coNP but P ̸= NP.

3. NP ̸= coNP and P ̸= NP.

• This is the current “consensus.”a

aCarl Gauss (1777–1855), “I could easily lay down a multitude of such

propositions, which one could neither prove nor dispose of.”

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 412

The Primality Problem

• An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.

• primes asks if an integer N is a prime number.

• Dividing N by 2, 3, . . . ,
√
N is not efficient.

– The length of N is only logN , but
√
N = 20.5 logN .

– So it is an exponential-time algorithm.

• A polynomial-time algorithm for primes was not found

until 2002 by Agrawal, Kayal, and Saxena!

• Later, we will focus on efficient “probabilistic”

algorithms for primes (used in Mathematica, e.g.).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 413

1: if n = ab for some a, b > 1 then

2: return “composite”;

3: end if

4: for r = 2, 3, . . . , n − 1 do

5: if gcd(n, r) > 1 then

6: return “composite”;

7: end if

8: if r is a prime then

9: Let q be the largest prime factor of r − 1;

10: if q ≥ 4
√
r logn and n(r−1)/q ̸= 1 mod r then

11: break; {Exit the for-loop.}
12: end if

13: end if

14: end for{r − 1 has a prime factor q ≥ 4
√
r logn.}

15: for a = 1, 2, . . . , 2
√
r logn do

16: if (x − a)n ̸= (xn − a) mod (xr − 1) in Zn[x] then

17: return “composite”;

18: end if

19: end for

20: return “prime”; {The only place with “prime” output.}

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 414

The Primality Problem (concluded)

• NP ∩ coNP is the class of problems that have succinct

certificates and succinct disqualifications.

– Each “yes” instance has a succinct certificate.

– Each “no” instance has a succinct disqualification.

– No instances have both.

• We will see that primes ∈ NP ∩ coNP.

– In fact, primes ∈ P as mentioned earlier.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 415

Primitive Roots in Finite Fields

Theorem 49 (Lucas and Lehmer (1927)) a A number

p > 1 is a prime if and only if there is a number 1 < r < p

(called the primitive root or generator) such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q ̸= 1 mod p for all prime divisors q of p− 1.

• We will prove the theorem later (see pp. 427ff).

aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry

Lehmer (1905–1991).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 416

Derrick Lehmer (1905–1991)

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 417

Pratt’s Theorem

Theorem 50 (Pratt (1975)) primes ∈ NP ∩ coNP.

• primes is in coNP because a succinct disqualification is

a proper divisor.

– A proper divisor of a number n means n is not a

prime.

• Suppose p is a prime.

• p’s certificate includes the r in Theorem 49 (p. 416).

• Use recursive doubling to check if rp−1 = 1 mod p in

time polynomial in the length of the input, log2 p.

– r, r2, r4, . . . mod p, a total of ∼ log2 p steps.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 418

The Proof (concluded)

• We also need all prime divisors of p− 1: q1, q2, . . . , qk.

– Whether r, q1, . . . , qk are easy to find is irrelevant.

– There may be multiple choices for r.

• Checking r(p−1)/qi ̸= 1 mod p is also easy.

• Checking q1, q2, . . . , qk are all the divisors of p− 1 is easy.

• We still need certificates for the primality of the qi’s.

• The complete certificate is recursive and tree-like:

C(p) = (r; q1, C(q1), q2, C(q2), . . . , qk, C(qk)).

• We next prove that C(p) is succinct.

• As a result, C(p) can be checked in polynomial time.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 419

The Succinctness of the Certificate

Lemma 51 The length of C(p) is at most quadratic at

5 log22 p.

• This claim holds when p = 2 or p = 3.

• In general, p− 1 has k ≤ log2 p prime divisors

q1 = 2, q2, . . . , qk.

– Reason:

2k ≤
k∏

i=1

qi ≤ p− 1.

• Note also that, as q1 = 2,

k∏
i=2

qi ≤
p− 1

2
. (4)

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 420

The Proof (continued)

• C(p) requires:

– 2 parentheses;

– 2k < 2 log2 p separators (at most 2 log2 p bits);

– r (at most log2 p bits);

– q1 = 2 and its certificate 1 (at most 5 bits);

– q2, . . . , qk (at most 2 log2 p bits);a

– C(q2), . . . , C(qk).

aWhy?

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 421

The Proof (concluded)

• C(p) is succinct because, by induction,

|C(p)| ≤ 5 log2 p+ 5 + 5
k∑

i=2

log22 qi

≤ 5 log2 p+ 5 + 5

(
k∑

i=2

log2 qi

)2

≤ 5 log2 p+ 5 + 5 log22
p− 1

2
by inequality (4)

< 5 log2 p+ 5 + 5(log2 p− 1)2

= 5 log22 p+ 10− 5 log2 p ≤ 5 log22 p

for p ≥ 4.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 422

A Certificate for 23a

• Note that 7 is a primitive root modulo 23 and

23− 1 = 22 = 2× 11.

• So

C(23) = (7, 2, C(2), 11, C(11)).

• Note that 2 is a primitive root modulo 11 and

11− 1 = 10 = 2× 5.

• So

C(11) = (2, 2, C(2), 5, C(5)).

aThanks to a lively discussion on April 24, 2008.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 423

A Certificate for 23 (concluded)

• Note that 2 is a primitive root modulo 5 and

5− 1 = 4 = 22.

• So

C(5) = (2, 2, C(2)).

• In summary,

C(23) = (7, 2, C(2), 11, (2, 2, C(2), 5, (2, 2, C(2)))).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 424

Basic Modular Arithmeticsa

• Let m,n ∈ Z+.

• m |n means m divides n; m is n’s divisor.

• We call the numbers 0, 1, . . . , n− 1 the residue modulo

n.

• The greatest common divisor of m and n is denoted

gcd(m,n).

• The r in Theorem 49 (p. 416) is a primitive root of p.

• We now prove the existence of primitive roots and then

Theorem 49 (p. 416).

aCarl Friedrich Gauss.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 425

Basic Modular Arithmetics (concluded)

• We use

a ≡ b mod n

if n | (a− b).

– So 25 ≡ 38 mod 13.

• We use

a = b mod n

if n | (a− b) and 0 ≤ b < n; in other words, b is the

remainder of a divided by n.

– So 25 = 12 mod 13.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 426

Euler’sa Totient or Phi Function

• Let

Φ(n) = {m : 1 ≤ m < n, gcd(m,n) = 1}

be the set of all positive integers less than n that are

prime to n.b

– Φ(12) = {1, 5, 7, 11}.

• Define Euler’s function of n to be ϕ(n) = |Φ(n)|.

• ϕ(p) = p− 1 for prime p, and ϕ(1) = 1 by convention.

• Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

aLeonhard Euler (1707–1783).
bZ∗

n is an alternative notation.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 427

��� ��� ��� ��� Q

���

���

���

���

���
I+Q/

HXOHUSKL�QE �

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 428

Two Properties of Euler’s Function

The inclusion-exclusion principlea can be used to prove the

following.

Lemma 52 ϕ(n) = n
∏

p|n(1−
1
p).

• If n = pe11 pe22 · · · peℓℓ is the prime factorization of n, then

ϕ(n) = n
ℓ∏

i=1

(
1− 1

pi

)
.

Corollary 53 ϕ(mn) = ϕ(m)ϕ(n) if gcd(m,n) = 1.

aConsult any textbook on discrete mathematics.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 429

A Key Lemma

Lemma 54
∑

m|n ϕ(m) = n.

• Let
∏ℓ

i=1 p
ki
i be the prime factorization of n and consider

ℓ∏
i=1

[ϕ(1) + ϕ(pi) + · · ·+ ϕ(pki
i)]. (5)

• Equation (5) equals n because ϕ(pki) = pki − pk−1
i by

Lemma 52 (p. 429) so ϕ(1) + ϕ(pi) + · · ·+ ϕ(pki
i) = pki

i .

• Expand Eq. (5) to yield

∑
k′
1≤k1,...,k′

ℓ≤kℓ

ℓ∏
i=1

ϕ(p
k′
i

i).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 430

The Proof (concluded)

• By Corollary 53 (p. 429),

ℓ∏
i=1

ϕ(p
k′
i

i) = ϕ

(
ℓ∏

i=1

p
k′
i

i

)
.

• So Eq. (5) becomes ∑
k′
1≤k1,...,k′

ℓ≤kℓ

ϕ

(
ℓ∏

i=1

p
k′
i

i

)
.

• Each
∏ℓ

i=1 p
k′
i

i is a unique divisor of n =
∏ℓ

i=1 p
ki
i .

• Equation (5) becomes ∑
m|n

ϕ(m).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 431

