Related Problems

We are given a family F' = {51, 53,...,5,} of subsets of
a finite set U and a budget B.

SET COVERING asks if there exists a set of B sets in F

whose union is U.

SET PACKING asks if there are B disjoint sets in F'.

Assume |U| = 3m for some m € N and |5;| = 3 for all 1.

EXACT COVER BY 3-SETS asks if there are m sets in F'
that are disjoint and have U as their union.
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SET COVERING SET PACKING
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Related Problems (concluded)

Corollary 45 (Karp (1972)) SET COVERING, SET
PACKING, and EXACT COVER BY 3-SETS are all
NP-complete.

e SET COVERING can be used to prove that the influence
maximization problem in social networks is

NP-complete.?

2Kempe, Kleinberg, and Tardos (2003).
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The KNAPSACK Problem
There is a set of n items.

Item ¢ has value v; € Z* and weight w; € Z™.

We are given K € ZT and W € Z™.

KNAPSACK asks if there exists a subset S C {1,2,...,n}
such that } . qw; <W and ), qv; > K.

— We want to achieve the maximum satisfaction within
the budget.
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KNAPSACK |s NP-Complete?

KNAPSACK € NP: Guess an S and verify the constraints.

We shall reduce EXACT COVER BY 3-SETS to KNAPSACK,
in which v; = w; for all : and K = W.

KNAPSACK now asks if a subset of {v1,vs,...,v,} adds
up to exactly K.

— Picture yourself as a radio DJ.

aKarp (1972).
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The Proof (continued)

e The primary differences between the two problems are:*
— Sets vs. numbers.
— Union vs. addition.

e We are given a family F' = {S51,5,,...,5,} of size-3
subsets of U = {1,2,...,3m}.

e EXACT COVER BY 3-SETS asks if there are m disjoint
sets in F' that cover the set U.

aThanks to a lively class discussion on November 16, 2010.
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The Proof (continued)

e Think of a set as a bit vector in {0, 1}3™.

— 001100010 means the set {3, 4, 8}.

— 110010000 means the set {1,2,5}.

e Our goal is
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The Proof (continued)

e A bit vector can also be seen as a binary number.
e Set union resembles addition:

001100010
110010000

111110010
which denotes the set {1,2,3,4,5,8}, as desired.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 382



The Proof (continued)

e Trouble occurs when there is carry:

010000000
+ 010000000
100000000

which denotes the set {1}, not the desired {2}.
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The Proof (continued)

e Or consider
001100010
+ 001110000

011010010

which denotes the set {2,3, 5,8}, not the desired
{3,4,5,8}.2

2Corrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.
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The Proof (continued)

e Carry may also lead to a situation where we obtain our

solution 11 ---1 with more than m sets in F'.

e For example,

000100010
001110000
101100000
000001101

111111111

e But the true answer, {1,3,4,5,6,7,8,9}, is not an exact

cover.
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The Proof (continued)

And it uses 4 sets instead of the required m = 3.2

e To fix this problem, we enlarge the base just enough so

that there are no carries.P

e Because there are n vectors in total, we change the base
from 2 to n + 1.

@Thanks to a lively class discussion on November 20, 2002.
PYou cannot map U to V because KNAPSACK requires +.
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The Proof (continued)

e Set v; to be the integer corresponding to the bit vector
encoding S; in base n + 1:

b= 3 (1) 3)
JES;

e Now in base n + 1, if there is a set .S such that
3m

A . . .
> icg Vi =11---1, then every bit position must be

contributed by exactly one v; and |S| = m.

e Finally, set

(base n + 1).
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The Proof (continued)

e For example, the case on p. 385 becomes

000100010
001110000
101100000
000001101

102311111

in base 6.

e It does not meet the goal.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 388



The Proof (continued)

e Suppose F' admits an exact cover, say {S1,S52,...,9n}.

e Then picking S = {1,2,..., m} clearly results in

3m
—
v+vo+---+v,=11---1.

— It is important to note that the meaning of addition
(+) is independent of the base.?
— It is just regular addition.

— But an S; may give rise to different integer v;’s in
Eq. (3) on p. 387 under different bases.

2Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3,
2004.
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The Proof (concluded)

e On the other hand, suppose there exists an S such that

3m

—
Ziesvf;:ll---lin base n + 1.

e The no-carry property implies that |S| = m and

{S; :i € S} is an exact cover.
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An Example

o Let m=3,U ={1,2,3,4,5,6,7,8,9}, and

{1, 3,4},
{2, 3,4},
{2,5,6},
{6,7,8},
{7,8,9}.

e Note that n = 5, as there are 5 .5;’s.
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An Example (continued)
e Our reduction produces

3x3—1

—
-1 (base 6) = 2015539,

101100000 = 1734048,
011100000 = 334368,
010011000 = 281448,
000001110 = 258,
000000111 = 43.
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An Example (concluded)

e Note v + v3 + v5 = K because
101100000
010011000
000000111

111111111

e Indeed, S; U S3U S5 =11,2,3,4,5,6,7,8,9}, an exact

cover by 3-sets.
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BIN PACKING

e We are given NN positive integers ai,as,...,ay, an

integer C' (the capacity), and an integer B (the number
of bins).

e BIN PACKING asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.
e Think of packing bags at the check-out counter.

Theorem 46 BIN PACKING s NP-complete.
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INTEGER PROGRAMMING

e INTEGER PROGRAMMING asks whether a system of linear
inequalities with integer coeflicients has an integer

solution.

e In contrast, LINEAR PROGRAMMING asks whether a

system of linear inequalities with integer coeflicients has

a rational solution.
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INTEGER PROGRAMMING Is NP-Complete?

e SET COVERING can be expressed by the inequalities
Ax > T, Y12 < B,0<z; <1, where

— x; is one if and only if S; is in the cover.

A is the matrix whose columns are the bit vectors of
the sets 51, 99, .. ..

1 is the vector of 1s.

— The operations in Ax are standard matrix operations.
e This shows INTEGER PROGRAMMING is NP-hard.

e Many NP-complete problems can be expressed as an
INTEGER PROGRAMMING problem.

aKarp (1972).
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Easier or Harder?®
e Adding restrictions on the allowable problem instances
will not make a problem harder.

— We are now solving a subset of problem instances or

special cases.

— The INDEPENDENT SET proof (p. 328) and the
KNAPSACK proof (p. 379).

— SAT to 2SAT (easier by p. 311).

— CIRCUIT VALUE to MONOTONE CIRCUIT VALUE
(equally hard by p. 284).

2Thanks to a lively class discussion on October 29, 2003.
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Easier or Harder? (concluded)

e Adding restrictions on the allowable solutions may make
a problem harder, equally hard, or easier.

e It is problem dependent.
— MIN CUT to BISECTION WIDTH (harder by p. 355).

— LINEAR PROGRAMMING to INTEGER PROGRAMMING
(harder by p. 395).

— SAT to NAESAT (equally hard by p. 322) and MAX
CUT to MAX BISECTION (equally hard by p. 353).

— 3-COLORING to 2-COLORING (easier by p. 363).
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coNP and Function Problems
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coNP

e NP is the class of problems that have succinct

certificates (recall Proposition 35 on p. 296).

e By definition, coNP is the class of problems whose

complement is in NP.
e coNP is therefore the class of problems that have
succinct disqualifications:

— A “no” instance of a problem in coNP possesses a
short proof of its being a “no” instance.

— Only “no” instances have such proofs.
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coNP (continued)

e Suppose L is a coNP problem.
e There exists a polynomial-time nondeterministic
algorithm M such that:

— If x € L, then M(x) = “yes” for all computation
paths.

— If x ¢ L, then M (x) = “no” for some computation

path.

e Note that if we swap “yes” and “no” of M, the new
algorithm M’ decides L € NP in the classic sense (p. 88).
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coNP (concluded)
e Clearly P C colNP.

e [t is not known if
P = NP N coNP.
— Contrast this with

R = RENcoRE

(see Proposition 11 on p. 148).
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Some coNP Problems

e VALIDITY € coNP.
— If ¢ is not valid, it can be disqualified very succinctly:
a truth assignment that does not satisty it.
® SAT COMPLEMENT € coNP.

— SAT COMPLEMENT is the complement of SAT.

— The disqualification is a truth assignment that

satisfies it.

e HAMILTONIAN PATH COMPLEMENT &€ coNP.

— The disqualification is a Hamiltonian path.
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Some coNP Problems (concluded)

e OPTIMAL TSP (D) € coNP.

— OPTIMAL TSP (D) asks if the optimal tour has a total

distance of B, where B is an input.?

— The disqualification is a tour with a length < B.

2Defined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
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A Nondeterministic Algorithm for SAT COMPLEMENT

@ is a boolean formula with n variables.
fori:=1,2,...,ndo

Guess z; € {0,1}; {Nondeterministic choice.}
end for
{Verification:}
if ¢(x1,22,...,2,) =1 then

“no”;
else

44 7

yes |
end if

1:
2:
3:
4:
5:
6:
7
8:
9:
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Analysis

e The algorithm decides language {¢ : ¢ is unsatisfiable}.

— The computation tree is a complete binary tree of
depth n.

Every computation path corresponds to a particular
truth assignment out of 2.

¢ is unsatisfiable iff every truth assignment falsifies ¢.

But every truth assignment falsifies ¢ iff every

computation path results in “yes.”
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An Alternative Characterization of coNP

Proposition 47 Let L C X* be a language. Then L € coNP
iof and only if there is a polynomially decidable and
polynomially balanced relation R such that

L=A{x:Vy(z,y) € R}.

(As on p. 295, we assume |y| < |z |F for some k.)

o L ={x:3y(x,y) € ~R}.

e Because —R remains polynomially balanced, L € NP by
Proposition 35 (p. 296).

Hence L € coNP by definition.
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coNP-Completeness

Proposition 48 L is NP-complete if and only if its
complement L = ¥* — L is coNP-complete.

Proof (=; the < part is symmetric)
e Let L’ be any coNP language.
Hence L' € NP.
Let R be the reduction from L’ to L.
So x € L' if and only if R(z) € L.
Equivalently, © ¢ L’ if and only if R(x) ¢ L (the law of

transposition).
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coNP Completeness (concluded)

e Soz € L' if and only if R(x) € L.
e R is a reduction from L’ to L.

e But L € coNP.
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Some coNP-Complete Problems

e SAT COMPLEMENT is coNP-complete.

e VALIDITY is coNP-complete.
— ¢ is valid if and only if —¢ is not satisfiable.
— The reduction from SAT COMPLEMENT to VALIDITY

is hence easy.

e HAMILTONIAN PATH COMPLEMENT is coNP-complete.
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Possible Relations between P, NP, coNP

1. P = NP = coNP.
2. NP = coNP but P # NP.
3. NP # coNP and P # NP.

e This is the current “consensus.”?

2Carl Gauss (1777-1855), “I could easily lay down a multitude of such

propositions, which one could neither prove nor dispose of.”
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The Primality Problem

An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.

PRIMES asks if an integer N is a prime number.

Dividing N by 2,3,..., VN is not efficient.

— The length of N is only log N, but /N = 20-5loe N

— So it is an exponential-time algorithm.

A polynomial-time algorithm for PRIMES was not found
until 2002 by Agrawal, Kayal, and Saxenal

Later, we will focus on efficient “probabilistic”
algorithms for PRIMES (used in Mathematica, e.g.).
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if n = a® for some a,b > 1 then
return “composite”;

end if

: forr=2,3,...,n—1do

if gcd(n,r) > 1 then
return “composite”;

end if

if r is a prime then

Let q be the largest prime factor of r — 1;
if ¢ > 4y/Tlogn and n{""1/9 £ 1 mod r then

break; {Exit the for-loop.}
end if
end if
: end for{r — 1 has a prime factor ¢ > 4y/rlogn.}
: fora=1,2,...,2y/rlogn do
if (x —a)™ # (2 —a) mod (" — 1) in Z,,[z ] then
return “composite”;
end if
: end for
: return “prime”; {The only place with “prime” output.}
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The Primality Problem (concluded)

e NP N coNP is the class of problems that have succinct
certificates and succinct disqualifications.

— Each “yes” instance has a succinct certificate.
— Each “no” instance has a succinct disqualification.

— No instances have both.

e We will see that PRIMES € NP N coNP.

— In fact, PRIMES € P as mentioned earlier.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 415



Primitive Roots in Finite Fields

Theorem 49 (Lucas and Lehmer (1927)) # A number
p > 1 is a prime if and only if there is a number 1 <r <p

(called the primitive root or generator) such that

1. P71 =1 mod p, and

2. rP=1/a £ 1 mod p for all prime divisors q of p — 1.

e We will prove the theorem later (see pp. 427ff).

2Frangois Edouard Anatole Lucas (1842-1891); Derrick Henry
Lehmer (1905-1991).
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Derrick Lehmer (1905-1991)
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Pratt's Theorem

Theorem 50 (Pratt (1975)) PRIMES € NP N coNP.

e PRIMES is in coNP because a succinct disqualification is

a proper divisor.

— A proper divisor of a number n means n is not a

prime.
e Suppose p is a prime.

e p’s certificate includes the 7 in Theorem 49 (p. 416).

e Use recursive doubling to check if 7P~ =1 mod p in

time polynomial in the length of the input, log, p.

— r,r2,rt, ... mod p, a total of ~ log, p steps.
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The Proof (concluded)

We also need all prime divisors of p — 1: q1,qo, ..., qk.
— Whether r,qq,..., gy are easy to find is irrelevant.

— There may be multiple choices for r.

Checking r(P~1)/4% £ 1 mod p is also easy.

Checking q1, qo, ..., q. are all the divisors of p — 1 is easy.
We still need certificates for the primality of the g;’s.

The complete certificate is recursive and tree-like:

C(p) = (r;¢1,C(q1), 92, C(q2), - - -, a, Cqr))-

We next prove that C(p) is succinct.

As a result, C'(p) can be checked in polynomial time.
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The Succinctness of the Certificate
Lemma 51 The length of C(p) is at most quadratic at
51og; p.
e This claim holds when p = 2 or p = 3.

e In general, p — 1 has £ < log, p prime divisors
1 =2,q2,- -, Gk

— Reason:

k
2k SH%‘SP—L
i—1

e Note also that, as ¢; = 2,
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The Proof (continued)

C'(p) requires:

2 parentheses;
2k < 2log, p separators (at most 2log, p bits);
r (at most log, p bits);
g1 = 2 and its certificate 1 (at most 5 bits);
g2, ---,qr (at most 2log, p bits);?
C(q2),---,Clar).

aWhy?
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The Proof (concluded)

e ('(p) is succinct because, by induction,

k
C(p)] < 5logyp+5+5)» logj g
1=2

L 2
5logyp+ 5+ 5 (Z log, qi>

1=2

—1
5logy p+ 5 + 5log; pT by inequality (4)

51ogy p + 5+ 5(logy p — 1)°
5logs p 4+ 10 — 5log, p < 5logs p
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A Certificate for 232

Note that 7 is a primitive root modulo 23 and
23 —1=22=2 x 11.

So
C'(23) =(7,2,C(2),11,C(11)).

Note that 2 is a primitive root modulo 11 and
11—-1=10=2 x 5.

So

C(11) = (2,2,C(2),5,0(5)).

aThanks to a lively discussion on April 24, 2008.
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A Certificate for 23 (concluded)

e Note that 2 is a primitive root modulo 5 and
h—1=4=22

e So

C'(5) =(2,2,C(2)).

e In summary,

C(23) = (7,2, C(2),11, (2,2, C(2), 5, (2,2,C(2)))).
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Basic Modular Arithmetics®
Let m,n € Z*.
m |n means m divides n; m is n’s divisor.

We call the numbers 0,1,...,n — 1 the residue modulo

n.

The greatest common divisor of m and n is denoted

ged(m,n).

The r in Theorem 49 (p. 416) is a primitive root of p.

We now prove the existence of primitive roots and then
Theorem 49 (p. 416).

@(Carl Friedrich Gauss.
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Basic Modular Arithmetics (concluded)

e We use

a=b modn
if n|(a—b).
— So 25 = 38 mod 13.

o We use

a=bmodn

if n|(a —b) and 0 < b < n; in other words, b is the

remainder of a divided by n.

— So 25 =12 mod 13.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 426



Euler's® Totient or Phi Function

Let
¢(n)={m:1<m < n,ged(m,n) =1}

be the set of all positive integers less than n that are

prime to n.”

— ®(12) = {1,5,7,11}.

Define Euler’s function of n to be ¢(n) = |®(n)|.

p — 1 for prime p, and ¢(1) = 1 by convention.

Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

2Leonhard Euler (1707-1783).
bZ* is an alternative notation.
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Two Properties of Euler's Function

The inclusion-exclusion principle* can be used to prove the

following.

Lemma 52 ¢(n) =n][],,(1— %)

o If n =pi'p5®---p,’ is the prime factorization of n, then

qﬁ(n):nﬁ(l;).

Corollary 53 ¢(mn) = ¢(m) ¢(n) if gcd(m,n) = 1.

2Consult any textbook on discrete mathematics.
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A Key Lemma

Lemma 54 ) . &(m)=n.

o Let Hle D; *i he the prime factorization of n and consider

14

[[lo(1) + o) + -+ d(p) . (5)

1=1

e Equation (5) equals n because qb(p,’f) pr— p,’f_l by
Lemma 52 (p. 429) so ¢(1) + ¢(ps) + - - - + p(p?*) = pi.

e Expand Eq. (5) to yield

J4
D | )

K, <ki,...,k)<kgi=1
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The Proof (concluded)
By Corollary 53 (p. 429),

So Eq. (5) becomes

=

kY <ki,....k, <k

1=1

/

0 k. . . .. Y .
Each [[,_; p;* is a unique divisor of n = [],_; pfz.

Equation (5) becomes

> é(m).

m|n

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 431



