
Theory of Computation

Mid-Term Examination on November 6, 2012

Fall Semester, 2012
Note: You may use any results proved in class.

Problem 1 (25 points) It is known that 3-SAT is NP-complete. Show

that 4-SAT is NP-complete. (Don’t forget to show that it is in NP.)

Ans: To show that 4-SAT is NP-complete, we prove that 4-SAT is in NP

and NP-hard.

First, 4-SAT is in NP, we can write a nondeterministic polynomial-time al-

gorithm which takes a 4-SAT instance and a proposed truth assignment as

input. This algorithm evaluates the 4-SAT instance with the truth assign-

ment. If the 4-SAT instance evaluates to true, the algorithm outputs yes ;

otherwise, the algorithm outputs no. This runs in polynomial time.

To prove that 4-SAT is NP-hard, we reduce 3-SAT to 4-SAT as follows. Let ϕ

denote an instance of 3-SAT. We convert ϕ to a 4-SAT instance ϕ′ by turning

each clause (x ∨ y ∨ z) in ϕ to (x ∨ y ∨ z ∨ h) ∧ (x ∨ y ∨ z ∨ ¬h), where h is

a new variable. Clearly this is polynomial-time doable.

⇒ If a given clause (x ∨ y ∨ z) is satisfied by a truth assignment, then

(x ∨ y ∨ z ∨ h) ∧ (x ∨ y ∨ z ∨ ¬h) is satisfied by the same truth as-

signment with h arbitrarily set. Thus if ϕ is satisfiable, ϕ′ is satisfiable.

⇐ Suppose ϕ′ is satisfied by a truth assignment T . Then (x ∨ y ∨ z ∨ h) ∧
(x ∨ y ∨ z ∨ ¬h) must be true under T . As h and ¬h assume different

truth values, x∨y∨z must be true under T as well. Thus ϕ is satisfiable.

Problem 2 (25 points) Show that if there exists a language L ∈ NP not

in P, then no NP-complete language is in P.

Ans: Suppose L ∈ NP, L /∈ P. Now, if there is an L′ ∈ P which is NP-

complete, then L ∈ NP can be reduced to L′, and hence L ∈ P, a contradic-

tion.



Problem 3 (25 points) Show that L ̸= P or P ̸= PSPACE.

Ans: Suppose L = P and P = PSPACE instead. Then L = PSPACE.

However, we know these two classes are different by the space hierarchy

theorem, a contradiction.

Problem 4 (25 points) Show that {M : M halts on all inputs} is not re-

cursive.

Ans: We reduce halting problem to this problem. Given M ;x, we construct

the following machine M ′:

M ′(y) : if y = x then M(x) else halt.

Obviously, M ′ halts on all inputs if and only is M halts on x.


