Theory of Computation

Mid-Term Examination on November 6, 2012

Fall Semester, 2012

Note: You may use any results proved in class.

Problem 1 (25 points) It is known that 3-SAT is NP-complete. Show that 4-SAT is NP-complete. (Don't forget to show that it is in NP.)

Ans: To show that 4-SAT is NP-complete, we prove that 4-SAT is in NP and NP-hard.

First, 4-SAT is in NP, we can write a nondeterministic polynomial-time algorithm which takes a 4-SAT instance and a proposed truth assignment as input. This algorithm evaluates the 4-SAT instance with the truth assignment. If the 4-SAT instance evaluates to true, the algorithm outputs *yes*; otherwise, the algorithm outputs *no*. This runs in polynomial time.

To prove that 4-SAT is NP-hard, we reduce 3-SAT to 4-SAT as follows. Let ϕ denote an instance of 3-SAT. We convert ϕ to a 4-SAT instance ϕ' by turning each clause $(x \lor y \lor z)$ in ϕ to $(x \lor y \lor z \lor h) \land (x \lor y \lor z \lor \neg h)$, where h is a new variable. Clearly this is polynomial-time doable.

- ⇒ If a given clause $(x \lor y \lor z)$ is satisfied by a truth assignment, then $(x \lor y \lor z \lor h) \land (x \lor y \lor z \lor \neg h)$ is satisfied by the same truth assignment with *h* arbitrarily set. Thus if ϕ is satisfiable, ϕ' is satisfiable.
- $\Leftarrow \text{ Suppose } \phi' \text{ is satisfied by a truth assignment } T. \text{ Then } (x \lor y \lor z \lor h) \land \\ (x \lor y \lor z \lor \neg h) \text{ must be true under } T. \text{ As } h \text{ and } \neg h \text{ assume different} \\ \text{ truth values, } x \lor y \lor z \text{ must be true under } T \text{ as well. Thus } \phi \text{ is satisfiable.}$

Problem 2 (25 points) Show that if there exists a language $L \in NP$ not in P, then no NP-complete language is in P.

Ans: Suppose $L \in NP$, $L \notin P$. Now, if there is an $L' \in P$ which is NP-complete, then $L \in NP$ can be reduced to L', and hence $L \in P$, a contradiction.

Problem 3 (25 points) Show that $L \neq P$ or $P \neq PSPACE$.

Ans: Suppose L = P and P = PSPACE instead. Then L = PSPACE. However, we know these two classes are different by the space hierarchy theorem, a contradiction.

Problem 4 (25 points) Show that $\{M : M \text{ halts on all inputs}\}$ is not recursive.

Ans: We reduce halting problem to this problem. Given M; x, we construct the following machine M':

M'(y): if y = x then M(x) else halt.

Obviously, M' halts on all inputs if and only is M halts on x.