Theory of Computation

Mid-Term Examination on November 6, 2012
Fall Semester, 2012
Note: You may use any results proved in class.
Problem 1 (25 points) It is known that 3-SAT is NP-complete. Show that 4-SAT is NP-complete. (Don't forget to show that it is in NP.)

Ans: To show that 4-SAT is NP-complete, we prove that 4-SAT is in NP and NP-hard.
First, 4-SAT is in NP, we can write a nondeterministic polynomial-time algorithm which takes a 4-SAT instance and a proposed truth assignment as input. This algorithm evaluates the 4-SAT instance with the truth assignment. If the 4-SAT instance evaluates to true, the algorithm outputs yes; otherwise, the algorithm outputs no. This runs in polynomial time.
To prove that 4-SAT is NP-hard, we reduce 3-SAT to 4 -SAT as follows. Let ϕ denote an instance of 3-SAT. We convert ϕ to a 4 -SAT instance ϕ^{\prime} by turning each clause $(x \vee y \vee z)$ in ϕ to $(x \vee y \vee z \vee h) \wedge(x \vee y \vee z \vee \neg h)$, where h is a new variable. Clearly this is polynomial-time doable.
\Rightarrow If a given clause $(x \vee y \vee z)$ is satisfied by a truth assignment, then $(x \vee y \vee z \vee h) \wedge(x \vee y \vee z \vee \neg h)$ is satisfied by the same truth assignment with h arbitrarily set. Thus if ϕ is satisfiable, ϕ^{\prime} is satisfiable.
\Leftarrow Suppose ϕ^{\prime} is satisfied by a truth assignment T. Then $(x \vee y \vee z \vee h) \wedge$ $(x \vee y \vee z \vee \neg h)$ must be true under T. As h and $\neg h$ assume different truth values, $x \vee y \vee z$ must be true under T as well. Thus ϕ is satisfiable.

Problem 2 (25 points) Show that if there exists a language $L \in N P$ not in P , then no NP-complete language is in P .

Ans: Suppose $L \in \mathrm{NP}, L \notin \mathrm{P}$. Now, if there is an $L^{\prime} \in \mathrm{P}$ which is NPcomplete, then $L \in \mathrm{NP}$ can be reduced to L^{\prime}, and hence $L \in \mathrm{P}$, a contradiction.

Problem 3 (25 points) Show that $L \neq P$ or $P \neq P S P A C E$.
Ans: Suppose $L=P$ and $P=P S P A C E$ instead. Then $L=P S P A C E$. However, we know these two classes are different by the space hierarchy theorem, a contradiction.

Problem 4 (25 points) Show that $\{M: M$ halts on all inputs $\}$ is not recursive.

Ans: We reduce halting problem to this problem. Given M; x, we construct the following machine M^{\prime} :

$$
M^{\prime}(y): \text { if } y=x \text { then } M(x) \text { else halt. }
$$

Obviously, M^{\prime} halts on all inputs if and only is M halts on x.

