Undirected Graphs

- An undirected graph $G=(V, E)$ has a finite set of nodes, V, and a set of undirected edges, E.
- It is like a directed graph except that the edges have no directions and there are no self-loops.
- Use $[i, j]$ to denote the fact that there is an edge between node i and node j.

Independent Sets

- Let $G=(V, E)$ be an undirected graph.
- $I \subseteq V$.
- I is independent if there is no edge between any two nodes $i, j \in I$.
- The independent set problem: Given an undirected graph and a goal K, is there an independent set of size K ?
- Many applications.

independent set Is NP-Complete

- This problem is in NP: Guess a set of nodes and verify that it is independent and meets the count.
- We will reduce 3sat to independent set.
- If a graph contains a triangle, any independent set can contain at most one node of the triangle.
- The results of the reduction will be graphs whose nodes can be partitioned into m disjoint triangles.

The Proof (continued)

- Let ϕ be an instance of 3SAT with m clauses.
- We will construct graph G with $K=m$.
- Furthermore, ϕ is satisfiable if and only if G has an independent set of size K.
- Here is the reduction:
- There is a triangle for each clause with the literals as the nodes.
- Add edges between x and $\neg x$ for every variable x.
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$

Same literal labels that appear in different clauses yield distinct nodes.

The Proof (continued)

- Suppose G has an independent set I of size $K=m$.
- An independent set can contain at most m nodes, one from each triangle.
- So I contains exactly one node from each triangle.
- Truth assignment T assigns true to those literals in I.
- T is consistent because contradictory literals are connected by an edge; hence both cannot be in I.
- T satisfies ϕ because it has a node from every triangle, thus satisfying every clause. ${ }^{\text {a }}$

[^0]
The Proof (concluded)

- Suppose a satisfying truth assignment T exists for ϕ.
- Collect one node from each triangle whose literal is true under T.
- The choice is arbitrary if there is more than one true literal.
- This set of m nodes must be independent by construction.
* Both literals x and $\neg x$ cannot be assigned true.

Other independent set-Related NP-Complete Problems

Corollary 37 independent set is $N P$-complete for 4-degree graphs.

Theorem 38 independent set is NP-complete for planar graphs.

Theorem 39 (Garey and Johnson (1977))
independent set is NP-complete for 3-degree planar graphs.

NODE COVER

- We are given an undirected graph G and a goal K.
- node cover: Is there a set C with K or fewer nodes such that each edge of G has at least one of its endpoints (i.e., incident nodes) in C ?
- Many applications.

NODE COVER Is NP-Complete

Corollary 40 (Karp (1972)) NODE COVER is

 NP-complete.- I is an independent set of $G=(V, E)$ if and only if $V-I$ is a node cover of G.

CLIQUE

- We are given an undirected graph G and a goal K.
- CLIQUE asks if there is a set C with K nodes such that there is an edge between any two nodes $i, j \in C$.
- Many applications.

Remarks ${ }^{\text {a }}$

- Are independent set and node cover NP-complete if K is a constant?
- No, because one can do an exhausive search on all the possible node covers or independent sets (both $\binom{n}{k}$ of them, a polynomial). ${ }^{\mathrm{b}}$
- Are independent set and node cover NP-complete if K is a linear function of n ?
- Independent set with $K=n / 3$ and node cover with $K=2 n / 3$ remain NP-complete by our reductions.

[^1]
CLIQUE Is NP-Complete

Corollary 41 (Karp (1972)) Clique is NP-complete.

- Let \bar{G} be the complement of G, where $[x, y] \in \bar{G}$ if and only if $[x, y] \notin G$.
- I is a clique in $G \Leftrightarrow I$ is an independent set in \bar{G}.

MIN CUT and MAX CUT

- A cut in an undirected graph $G=(V, E)$ is a partition of the nodes into two nonempty sets S and $V-S$.
- The size of a cut $(S, V-S)$ is the number of edges between S and $V-S$.
- MIN CUT $\in \mathrm{P}$ by the maxflow algorithm. ${ }^{\text {a }}$
- mAX CUT asks if there is a cut of size at least K. - K is part of the input.

[^2]

MIN CUT and MAX CUT (concluded)

- maX CUT has applications in circuit layout.
- The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size. ${ }^{\text {a }}$

[^3]
MAX CUT Is NP-Complete ${ }^{\text {a }}$

- We will reduce naEsAt to max cut.
- Given an instance ϕ of 3SAT with m clauses, we shall construct a graph $G=(V, E)$ and a goal K.
- Furthermore, there is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
- Each such edge contributes one to the cut if its nodes are separated.

[^4]
The Proof

- Suppose ϕ 's m clauses are $C_{1}, C_{2}, \ldots, C_{m}$.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- G has $2 n$ nodes: $x_{1}, x_{2}, \ldots, x_{n}, \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.
- No need to consider clauses with one literal (why?).
- For each variable x_{i}, add n_{i} copies of edge $\left[x_{i}, \neg x_{i}\right]$, where n_{i} is the number of occurrences of x_{i} and $\neg x_{i}$ in ϕ.

The Proof (continued)

- Set $K=5 m$.
- Suppose there is a cut $(S, V-S)$ of size $5 m$ or more.
- A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.
- Suppose both x_{i} and $\neg x_{i}$ are on the same side of the cut.
- They together contribute at most $2 n_{i}$ edges to the cut.
- They appear in at most n_{i} different clauses.
- A clause contributes at most 2 to a cut.

The Proof (continued)

- Either x_{i} or $\neg x_{i}$ contributes at most n_{i} to the cut by the pigeonhole principle.
- Changing the side of that literal does not decrease the size of the cut.
- Hence we assume variables are separated from their negations.
- The total number of edges in the cut that join opposite literals x_{i} and $\neg x_{i}$ is $\sum_{i=1}^{n} n_{i}$.
- But $\sum_{i=1}^{n} n_{i}=3 m$ as it is simply the total number of literals.

The Proof (concluded)

- The remaining $K-3 m \geq 2 m$ edges in the cut must come from the m triangles or parallel edges that correspond to the clauses.
- Each can contribute at most 2 to the cut. ${ }^{\text {a }}$
- So all are split.
- A split clause means at least one of its literals is true and at least one false.
- The other direction is left as an exercise.

[^5]A Cut That Does Not Meet the Goal $K=5 \times 3=15$

- $\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$.
- The cut size is $13<15$.

A Cut That Meets the Goal $K=5 \times 3=15$

- $\left(x_{1} \vee x_{2} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$
- The cut size is now 15 .

Remarks

- We had proved that max cut is NP-complete for multigraphs.
- How about proving the same thing for simple graphs? ${ }^{\text {a }}$
- How to modify the proof to reduce 4 Sat to max cut? ${ }^{\text {b }}$
- All NP-complete problems are mutually reducible by definition. ${ }^{\text {c }}$
- So they are equally hard in this sense. ${ }^{\text {d }}$

[^6]
MAX BISECTION

- max cut becomes max bisection if we require that $|S|=|V-S|$.
- It has many applications, especially in VLSI layout.

max bisection Is NP-Complete

- We shall reduce the more general max cut to max BISECTION.
- Add $|V|=n$ isolated nodes to G to yield G^{\prime}.
- G^{\prime} has $2 n$ nodes.
- G^{\prime} 's goal K is identical to G 's
- As the new nodes have no edges, they contribute nothing to the cut.
- This completes the reduction.

The Proof (concluded)

- Every cut $(S, V-S)$ of $G=(V, E)$ can be made into a bisection by appropriately allocating the new nodes between S and $V-S$.
- Hence each cut of G can be made a cut of G^{\prime} of the same size, and vice versa.

BISECTION WIDTH

- BISECTION WIDTH is like max Bisection except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).
- Unlike min cut, Bisection width is NP-complete.
- We reduce max bisection to BISECTION WIDTH.
- Given a graph $G=(V, E)$, where $|V|$ is even, we generate the complement of G.
- Given a goal of K, we generate a goal of $n^{2}-K$.

The Proof (concluded)

- To show the reduction works, simply notice the following easily verifiable claims.
- A graph $G=(V, E)$, where $|V|=2 n$, has a bisection of size K if and only if the complement of G has a bisection of size $n^{2}-K$.
- So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^{2}-K$.

hamiltonian path Is NP-Complete ${ }^{\text {a }}$

Theorem 42 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

[^7]A Hamiltonian Path at IKEA, Covina, California?

TSP (D) Is NP-Complete

Corollary 43 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Create a weighted complete graph G^{\prime} with the same nodes as from G follows.
- Set $d_{i j}=1$ on G^{\prime} if $[i, j] \in G$ and $d_{i j}=2$ on G^{\prime} if $[i, j] \notin G$.
- Note that G^{\prime} is a complete graph.
- Set the budget $B=n+1$.
- This completes the reduction.

TSP (D) Is NP-Complete (continued)

- Suppose G^{\prime} has a tour of distance at most $n+1$.
- Then that tour on G^{\prime} must contain at most one edge with weight 2 .
- If a tour on G^{\prime} contains 1 edge with weight 2 , remove that edge to arrive at a Hamiltonian path for G.
- If, on the other hand, a tour on G^{\prime} contains no edge with weight 2 .
- Remove any edge to arrive at a Hamiltonian path for G.

TSP (D) Is NP-Complete (concluded)

- On the other hand, suppose G has Hamiltonian paths.
- Then there is a tour on G^{\prime} containing at most one edge with weight 2 .
- The total cost is then at most $(n-1)+2=n+1=B$.
- We conclude that there is a tour of length B or less on G^{\prime} if and only if G has a Hamiltonian path.

Graph Coloring

- k-COLORING: Can the nodes of a graph be colored with $\leq k$ colors such that no two adjacent nodes have the same color? ${ }^{\text {a }}$
- 2-coloring is in P (why?).
- But 3-coloring is NP-complete (see next page).
- k-Coloring is NP-complete for $k \geq 3$ (why?).
- EXACT- k-COLORING asks if the nodes of a graph can be colored using exactly k colors.
- It remains NP-complete for $k \geq 3$ (why?).
${ }^{\mathrm{a}} k$ is not part of the input; k is part of the problem statement.

3-Coloring Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to 3-coloring.
- We are given a set of clauses $C_{1}, C_{2}, \ldots, C_{m}$ each with 3 literals.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- We shall construct a graph G such that it can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

[^8]
The Proof (continued)

- Every variable x_{i} is involved in a triangle $\left[a, x_{i}, \neg x_{i}\right]$ with a common node a.
- Each clause $C_{i}=\left(c_{i 1} \vee c_{i 2} \vee c_{i 3}\right)$ is also represented by a triangle

$$
\left[c_{i 1}, c_{i 2}, c_{i 3}\right] .
$$

- Node $c_{i j}$ with the same label as one in some triangle [$a, x_{k}, \neg x_{k}$] represent distinct nodes.
- There is an edge between $c_{i j}$ and the node that represents the j th literal of C_{i}.
- Alternative proof: there is an edge between $\neg c_{i j}$ and the node that represents the j th literal of $C_{i} .{ }^{\text {a }}$

[^9]Construction for $\cdots \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \cdots$

The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_{i} and $\neg x_{i}$ must take the color 0 and the other 1.

The Proof (continued)

- Treat 1 as true and 0 as false. ${ }^{\text {a }}$
- We were dealing only with those triangles with the " a " node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0 , the clauses are NAE-satisfied.
${ }^{\text {a }}$ The opposite also works.

The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2 .
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- We were dealing only with those triangles with the " a " node, not the clause triangles.

The Proof (continued)

- For each clause triangle:
- Pick any two literals with opposite truth values.
- Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
- Color the remaining node with color 2 .

The Proof (concluded)

- The coloring is legitimate.
- If literal w of a clause triangle has color 2 , then its color will never be an issue.
- If literal w of a clause triangle has color 1 , then it must be connected up to literal w with color 0 .
- If literal w of a clause triangle has color 0 , then it must be connected up to literal w with color 1 .

Algorithms for 3-COLORING and the Chromatic Number $\chi(G)$

- Assume G is 3 -colorable.
- There is an algorithm to find a 3 -coloring in time $O\left(3^{n / 3}\right)=1.4422^{n}$.
- It has been improved to $O\left(1.3289^{n}\right)$. ${ }^{\text {b }}$
${ }^{\text {a }}$ Lawler (1976).
${ }^{\mathrm{b}}$ Beigel and Eppstein (2000).

Algorithms for 3-coloring and the Chromatic Number $\chi(G)$ (concluded)

- The chromatic number $\chi(G)$ is the smallest number of colors needed to color a graph G.
- There is an algorithm to find $\chi(G)$ in time $O\left((4 / 3)^{n / 3}\right)=2.4422^{n}$. ${ }^{\text {a }}$
- It can be improved to $O\left(\left(4 / 3+3^{4 / 3} / 4\right)^{n}\right)=O\left(2.4150^{n}\right)^{\text {b }}$ and $2^{n} n^{O(1)}$. .
- Computing $\chi(G)$ cannot be easier than 3-coloring. ${ }^{\text {d }}$

[^10]
TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- tripartite matching asks if there is a set of n triples in T, none of which has a component in common.
- Each element in B is matched to a different element in G and different element in H.

Theorem 44 (Karp (1972)) tripartite matching is NP-complete.

[^0]: ${ }^{\text {a }}$ The variables without a truth value can be assigned arbitrarily. Contributed by Mr. Chun-Yuan Chen (R99922119) on November 2, 2010.

[^1]: ${ }^{\text {a }}$ Contributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
 ${ }^{\mathrm{b}} n=|V|$.

[^2]: ${ }^{\text {a }}$ In time $O(|V| \cdot|E|)$ by Orlin (2012).

[^3]: ${ }^{\text {a }}$ Raspaud, Sýkora, and Vrťo (1995); Mak and Wong (2000).

[^4]: ${ }^{\text {a }}$ Karp (1972) and Garey, Johnson, and Stockmeyer (1976).

[^5]: ${ }^{\text {a }}$ So $K=5 m$.

[^6]: ${ }^{\text {a }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
 ${ }^{\mathrm{b}}$ Contributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
 ${ }^{\text {c }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
 ${ }^{\mathrm{d}}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

[^7]: ${ }^{a}$ Karp (1972).

[^8]: ${ }^{a}$ Karp (1972).

[^9]: ${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

[^10]: ${ }^{\text {a }}$ Lawler (1976).
 ${ }^{\text {b }}$ Eppstein (2003).
 ${ }^{\text {c }}$ Koivisto (2006).
 ${ }^{\mathrm{d}}$ Contributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.

