Some Boolean Functions Need Exponential Circuits^a **Theorem 15 (Shannon (1949))** For any $n \ge 2$, there is an n-ary boolean function f such that no boolean circuits with $2^n/(2n)$ or fewer gates can compute it.

- There are 2^{2^n} different *n*-ary boolean functions (p. 176).
- So it suffices to prove that the number of boolean circuits with $2^n/(2n)$ or fewer gates is less than 2^{2^n} .

^aCan be strengthened to "almost all boolean functions . . ."

The Proof (concluded)

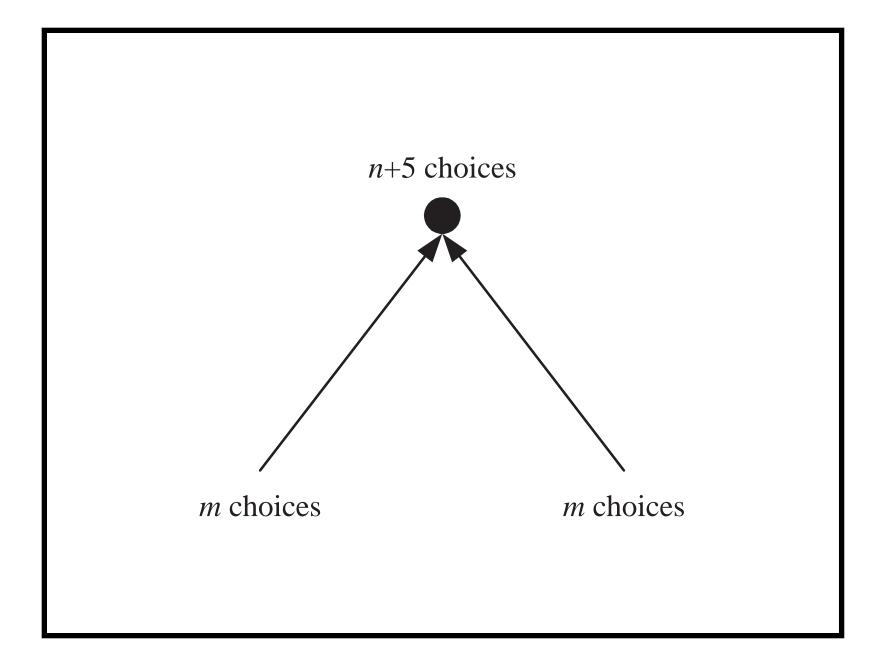
- There are at most $((n+5) \times m^2)^m$ boolean circuits with m or fewer gates (see next page).
- But $((n+5) \times m^2)^m < 2^{2^n}$ when $m = 2^n/(2n)$:

$$m \log_2((n+5) \times m^2)$$

$$= 2^n \left(1 - \frac{\log_2 \frac{4n^2}{n+5}}{2n}\right)$$

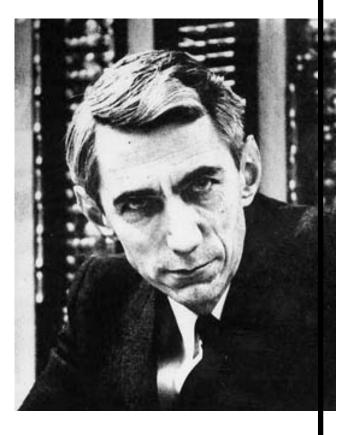
$$< 2^n$$

for $n \geq 2$.



Claude Elwood Shannon (1916–2001)

Howard Gardner, "[Shannon's master's thesis is] possibly the most important, and also the most famous, master's thesis of the century."



Comments

- The lower bound $2^n/(2n)$ is rather tight because an upper bound is $n2^n$ (p. 178).
- The proof counted the number of circuits.
 - Some circuits may not be valid at all.
 - Different circuits may also compute the same function.
- Both are fine because we only need an upper bound on the number of circuits.
- We do not need to consider the outdoing edges because they have been counted as incoming edges.

Relations between Complexity Classes

It is, I own, not uncommon to be wrong in theory and right in practice. — Edmund Burke (1729–1797), A Philosophical Enquiry into the Origin of Our Ideas of the Sublime and Beautiful (1757)

Proper (Complexity) Functions

- We say that f : N → N is a proper (complexity)
 function if the following hold:
 - -f is nondecreasing.
 - There is a k-string TM M_f such that $M_f(x) = \Box^{f(|x|)}$ for any x.^a
 - M_f halts after O(|x| + f(|x|)) steps.
 - M_f uses O(f(|x|)) space besides its input x.
- M_f 's behavior depends only on |x| not x's contents.
- M_f 's running time is bounded by f(n).

^aThe textbook calls " \square " the quasi-blank symbol. The use of $M_f(x)$ will become clear in Proposition 16 (p. 196).

Examples of Proper Functions

- Most "reasonable" functions are proper: c, $\lceil \log n \rceil$, polynomials of $n, 2^n, \sqrt{n}, n!$, etc.
- If f and g are proper, then so are f + g, fg, and 2^{g} .^a
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
 - For example, $\text{TIME}(f(n)) = \text{TIME}(2^{f(n)})$ for some recursive function f (the **gap theorem**).^b
- Only proper functions f will be used in TIME(f(n)), SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

^aFor f(g), we need to add $f(n) \ge n$. ^bTrakhtenbrot (1964); Borodin (1972).

Precise Turing Machines

- A TM M is **precise** if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
 - M halts after precisely f(n) steps, and
 - All of its strings are of length precisely g(n) at halting.
 - * Recall that if M is a TM with input and output, we exclude the first and last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

Proposition 16 Suppose a TM^{a} M decides L within time (space) f(n), where f is proper. Then there is a precise TM M' which decides L in time O(n + f(n)) (space O(f(n)), respectively).

- M' on input x first simulates the TM M_f associated with the proper function f on x.
- M_f 's output of length f(|x|) will serve as a "yardstick" or an "alarm clock."
- M'(x) halts when and only when the alarm clock runs out—even if M halts earlier.

^aIt can be deterministic or nondeterministic.

The Proof (continued)

- If f is a time bound:
 - The simulation of each step of M on x is matched by advancing the cursor on the "clock" string.
 - M' stops at the moment the "clock" string is exhausted—even if M(x) stops before that time.
 - So it is precise.
 - The time bound is therefore O(|x| + f(|x|)).

The Proof (concluded)

- If f is a space bound:
 - M' simulates M on the quasi-blanks of M_f 's output string.
 - As before, M' stops at the moment the "clock" string is exhausted—even if M(x) stops before that time.
 - So it is again precise.
 - The total space, not counting the input string, is O(f(n)).

Important Complexity Classes

- We write expressions like n^k to denote the union of all complexity classes, one for each value of k.
- For example,

$$\operatorname{NTIME}(n^k) = \bigcup_{j>0} \operatorname{NTIME}(n^j).$$

Important Complexity Classes (concluded)

 $P = TIME(n^{k}),$ $NP = NTIME(n^{k}),$ $PSPACE = SPACE(n^{k}),$ $NPSPACE = NSPACE(n^{k}),$ $E = TIME(2^{kn}),$ $EXP = TIME(2^{n^{k}}),$ $L = SPACE(\log n),$ $NL = NSPACE(\log n).$

Complements of Nondeterministic Classes

- R, RE, and coRE are distinct (p. 150).
 - coRE contains the complements of languages in RE, not the languages not in RE.
- Recall that the **complement** of L, denoted by \overline{L} , is the language $\Sigma^* L$.
 - SAT COMPLEMENT is the set of unsatisfiable boolean expressions.

The Co-Classes

• For any complexity class \mathcal{C} , $\mathrm{co}\mathcal{C}$ denotes the class

$$\{L: \bar{L} \in \mathcal{C}\}.$$

- Clearly, if C is a *deterministic* time or space *complexity* class, then C = coC.
 - They are said to be **closed under complement**.
 - A deterministic TM deciding L can be converted to one that decides \overline{L} within the same time or space bound by reversing the "yes" and "no" states (p. 147).
- Whether nondeterministic classes for time are closed under complement is not known (p. 92).

Comments

• As

$$\mathrm{co}\mathcal{C} = \{L : \bar{L} \in \mathcal{C}\},\$$

 $L \in \mathcal{C}$ if and only if $\overline{L} \in \operatorname{co}\mathcal{C}$.

- But it is *not* true that $L \in C$ if and only if $L \notin coC$. - coC is not defined as \overline{C} .
- For example, suppose $C = \{\{2, 4, 6, 8, 10, \ldots\}\}$.
- Then $\operatorname{co}\mathcal{C} = \{\{1, 3, 5, 7, 9, \ldots\}\}.$
- But $\overline{C} = 2^{\{1,2,3,\ldots\}^*} \{\{2,4,6,8,10,\ldots\}\}.$

The Quantified Halting Problem

- Let $f(n) \ge n$ be proper.
- Define

 $H_f = \{M; x : M \text{ accepts input } x \\ \text{after at most } f(|x|) \text{ steps} \},$

where M is deterministic.

• Assume the input is binary.

$H_f \in \mathsf{TIME}(f(n)^3)$

- For each input M; x, we simulate M on x with an alarm clock of length f(|x|).
 - Use the single-string simulator (p. 66), the universal TM (p. 132), and the linear speedup theorem (p. 75).
 - Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 73, the total running time is $O(\ell_M k_M^2 f(n)^2)$, where ℓ_M is the length to encode each symbol or state of M and k_M is M's number of strings.
- As $\ell_M k_M^2 = O(n)$, the running time is $O(f(n)^3)$, where the constant is independent of M.

$H_f \not\in \mathsf{TIME}(f(\lfloor n/2 \rfloor))$

- Suppose TM M_{H_f} decides H_f in time $f(\lfloor n/2 \rfloor)$.
- Consider machine $D_f(M)$:

if $M_{H_f}(M; M) =$ "yes" then "no" else "yes"

- "This sentence is false."

• D_f on input M runs in the same time as M_{H_f} on input M; M, i.e., in time $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$, where n = |M|.^a

^aA student pointed out on October 6, 2004, that this estimation omits the time to write down M; M.

The Proof (concluded)

• First,

$$D_f(D_f) =$$
 "yes"

$$\Rightarrow D_f; D_f \notin H_f$$

 $\Rightarrow D_f$ does not accept D_f within time $f(|D_f|)$

$$\Rightarrow D_f(D_f) \neq$$
 "yes"

$$\Rightarrow D_f(D_f) =$$
 "no"

a contradiction

• Similarly, $D_f(D_f) =$ "no" $\Rightarrow D_f(D_f) =$ "yes."

The Time Hierarchy Theorem

Theorem 17 If $f(n) \ge n$ is proper, then

 $\text{TIME}(f(n)) \subsetneq \text{TIME}(f(2n+1)^3).$

• The quantified halting problem makes it so.

Corollary 18 $P \subsetneq E$.

- $\mathbf{P} \subseteq \text{TIME}(2^n)$ because $\text{poly}(n) \leq 2^n$ for n large enough.
- But by Theorem 17,

 $\operatorname{TIME}(2^n) \subsetneq \operatorname{TIME}((2^{2n+1})^3) \subseteq \operatorname{E}.$

• So
$$P \subsetneq E$$
.

The Space Hierarchy Theorem **Theorem 19 (Hennie and Stearns (1966))** If f(n) is proper, then

 $SPACE(f(n)) \subsetneq SPACE(f(n) \log f(n)).$

Corollary 20 $L \subsetneq PSPACE$.

Nondeterministic Time Hierarchy Theorems **Theorem 21 (Cook (1973))** NTIME $(n^r) \subsetneq$ NTIME (n^s) whenever $1 \le r < s$.

Theorem 22 (Seiferas, Fischer, and Meyer (1978)) If $T_1(n), T_2(n)$ are proper, then

 $\operatorname{NTIME}(T_1(n)) \subsetneq \operatorname{NTIME}(T_2(n))$

whenever $T_1(n+1) = o(T_2(n)).$

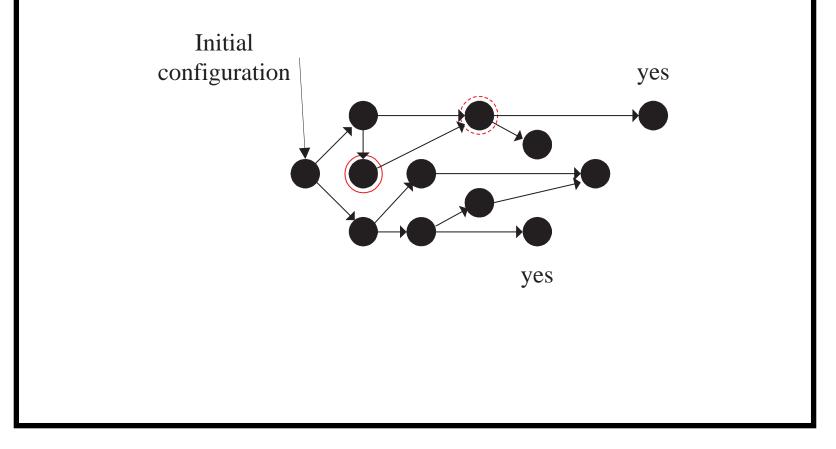
The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- Two nodes are connected by a directed edge if one yields the other in one step.
- The start node representing the initial configuration has zero in degree.

The Reachability Method (concluded)

- When the TM is nondeterministic, a node may have an out degree greater than one.
 - The graph is the same as the computation tree earlier except that identical configuration nodes are merged into one node.
- So *M* accepts the input if and only if there is a path from the start node to a node with a "yes" state.
- It is the reachability problem.

Illustration of the Reachability Method



Theorem 23 Suppose f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq SPACE(f(n))$.
- 3. NSPACE $(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)}).$
- Proof of 2:
 - Explore the computation tree of the NTM for "yes."
 - Specifically, generate an f(n)-bit sequence denoting the nondeterministic choices over f(n) steps.

Proof of Theorem 23(2)

- (continued)
 - Simulate the NTM based on the choices.
 - Recycle the space and repeat the above steps until a "yes" is encountered or the tree is exhausted.
 - Each path simulation consumes at most O(f(n))space because it takes O(f(n)) time.
 - The total space is O(f(n)) because space is recycled.

Proof of Theorem 23(3)

• Let *k*-string NTM

$$M = (K, \Sigma, \Delta, s)$$

with input and output decide $L \in \text{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a (2k+1)-tuple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$$

Proof of Theorem 23(3) (continued)

• We only care about

$$(q, i, w_2, u_2, \ldots, w_{k-1}, u_{k-1}),$$

where i is an integer between 0 and n for the position of the first cursor.

• The number of configurations is therefore at most

$$|K| \times (n+1) \times |\Sigma|^{(2k-4)f(n)} = O(c_1^{\log n + f(n)}) \quad (1)$$

for some c_1 , which depends on M.

• Add edges to the configuration graph based on M's transition function.

Proof of Theorem 23(3) (concluded)

- x ∈ L ⇔ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i,...).^a
- This is REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes.
- It is in $\text{TIME}(c^{\log n + f(n)})$ for some c because REACHABILITY $\in \text{TIME}(n^j)$ for some j and

$$\left[c_1^{\log n + f(n)}\right]^j = (c_1^j)^{\log n + f(n)}.$$

^aThere may be many of them.

Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations earlier (p. 89), the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce an quasi-blank output of length f(n) first.
 - The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n + f(n)}$ steps for some c (p. 217).
 - So we can prevent infinite loops during simulation by pruning any path longer than $c^{\log n + f(n)}$.

A Grand Chain of Inclusions $^{\rm a}$

- It is an easy application of Theorem 23 (p. 214) that $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP.$
- By Corollary 20 (p. 209), we know $L \subsetneq PSPACE$.
- So the chain must break somewhere between L and EXP.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.

 $^{\rm a}{\rm With}$ input from Mr. Chin-Luei Chang (R93922004, D95922007) on October 22, 2004.

Nondeterministic Space and Deterministic Space

• By Theorem 4 (p. 97),

```
\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}(c^{f(n)}),
```

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic—a polynomial—by Savitch's theorem.

Savitch's Theorem

```
Theorem 24 (Savitch (1970))
```

```
REACHABILITY \in SPACE(\log^2 n).
```

- Let G(V, E) be a graph with n nodes.
- For $i \ge 0$, let

```
PATH(x, y, i)
```

mean there is a path from node x to node y of length at most 2^i .

• There is a path from x to y if and only if

```
PATH(x, y, \lceil \log n \rceil)
```

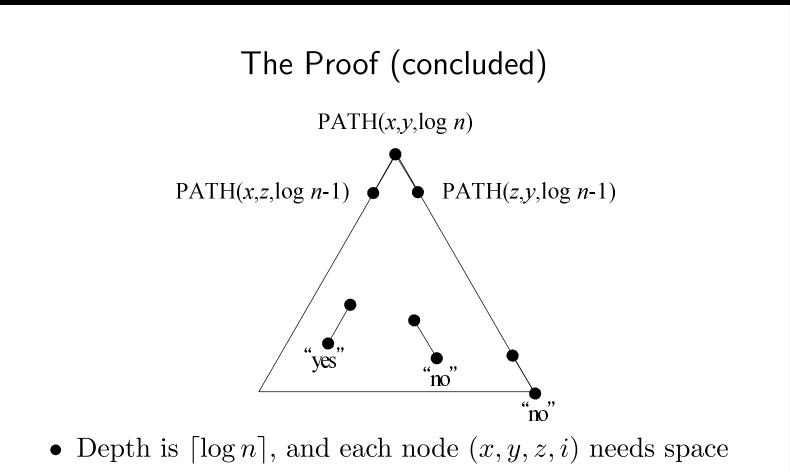
holds.

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute $PATH(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, z, i)s (see next page).^a
- Like stacks in recursive calls, we keep only the current path of (x, y, i)s.
- The space requirement is proportional to the depth of the tree: $\lceil \log n \rceil$.

^aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

The Proof (continued): Algorithm for PATH(x, y, i)1: **if** i = 0 **then** if x = y or $(x, y) \in E$ then 2: return true; 3: else 4: 5: return false; end if 6: 7: else for z = 1, 2, ..., n do 8: if PATH(x, z, i-1) and PATH(z, y, i-1) then 9: return true; 10: end if 11: end for 12:return false; 13:14: end if



- Depth is $|\log n|$, and each node (x, y, z, i) needs space $O(\log n)$.
- The total space is $O(\log^2 n)$.

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 25 Let $f(n) \ge \log n$ be proper. Then

 $NSPACE(f(n)) \subseteq SPACE(f^2(n)).$

- Apply Savitch's proof to the configuration graph of the NTM on the input.
- From p. 217, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we construct explicitly the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- In fact, we check node connectedness only when i = 0 on p. 224, by examining the input string G.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.^a

^aThanks to a lively class discussion on October 15, 2003.

The Proof (concluded)

- The z variable in the algorithm on p. 224 simply runs through all possible valid configurations.
 - Let $z = 0, 1, \dots, O(c^{f(n)})$.
 - Make sure z is a valid configuration before using it in the recursive calls.^a
- Each z has length O(f(n)) by Eq. (1) on p. 217.
- So each node needs space O(f(n)).
- As the depth of the recursive call on p. 224 is $O(\log c^{f(n)})$, the total space is therefore $O(f^2(n))$.

^aThanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- PSPACE = NPSPACE.
- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if P = NP.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 202).
- It is known that^a

$$coNSPACE(f(n)) = NSPACE(f(n)).$$
 (2)

$$coNL = NL,$$

 $coNPSPACE = NPSPACE.$

• But it is not known whether coNP = NP.

^aSzelepscényi (1987) and Immerman (1988).