
Some Boolean Functions Need Exponential Circuitsa

Theorem 15 (Shannon (1949)) For any n ≥ 2, there is

an n-ary boolean function f such that no boolean circuits

with 2n/(2n) or fewer gates can compute it.

• There are 22
n

different n-ary boolean functions (p. 176).

• So it suffices to prove that the number of boolean

circuits with 2n/(2n) or fewer gates is less than 22
n

.

aCan be strengthened to “almost all boolean functions . . .”
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The Proof (concluded)

• There are at most ((n+ 5)×m2)m boolean circuits with

m or fewer gates (see next page).

• But ((n+ 5)×m2)m < 22
n

when m = 2n/(2n):

m log2((n+ 5)×m2)

= 2n

(
1−

log2
4n2

n+5

2n

)
< 2n

for n ≥ 2.
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m choices

n+5 choices

m choices
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Claude Elwood Shannon (1916–2001)

Howard Gardner, “[Shannon’s mas-

ter’s thesis is] possibly the most im-

portant, and also the most famous,

master’s thesis of the century.”
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Comments

• The lower bound 2n/(2n) is rather tight because an

upper bound is n2n (p. 178).

• The proof counted the number of circuits.

– Some circuits may not be valid at all.

– Different circuits may also compute the same

function.

• Both are fine because we only need an upper bound on

the number of circuits.

• We do not need to consider the outdoing edges because

they have been counted as incoming edges.
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Relations between Complexity Classes
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It is, I own, not uncommon to be wrong in theory

and right in practice.

— Edmund Burke (1729–1797),

A Philosophical Enquiry into the Origin of Our

Ideas of the Sublime and Beautiful (1757)
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Proper (Complexity) Functions

• We say that f : N → N is a proper (complexity)

function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that

Mf (x) = ⊓f(| x |) for any x.a

– Mf halts after O(|x |+ f(|x |)) steps.
– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.

• Mf ’s running time is bounded by f(n).

aThe textbook calls “⊓” the quasi-blank symbol. The use of Mf (x)

will become clear in Proposition 16 (p. 196).
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Examples of Proper Functions

• Most “reasonable” functions are proper: c, ⌈log n⌉,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.a

• Nonproper functions when serving as the time bounds

for complexity classes spoil “the theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some

recursive function f (the gap theorem).b

• Only proper functions f will be used in TIME(f(n)),

SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aFor f(g), we need to add f(n) ≥ n.
bTrakhtenbrot (1964); Borodin (1972).
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Precise Turing Machines

• A TM M is precise if there are functions f and g such

that for every n ∈ N, for every x of length n, and for

every computation path of M ,

– M halts after precisely f(n) steps, and

– All of its strings are of length precisely g(n) at

halting.

∗ Recall that if M is a TM with input and output,

we exclude the first and last strings.

• M can be deterministic or nondeterministic.
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Precise TMs Are General

Proposition 16 Suppose a TMa M decides L within time

(space) f(n), where f is proper. Then there is a precise TM

M ′ which decides L in time O(n+ f(n)) (space O(f(n)),

respectively).

• M ′ on input x first simulates the TM Mf associated

with the proper function f on x.

• Mf ’s output of length f(|x |) will serve as a “yardstick”

or an “alarm clock.”

• M ′(x) halts when and only when the alarm clock runs

out—even if M halts earlier.

aIt can be deterministic or nondeterministic.
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The Proof (continued)

• If f is a time bound:

– The simulation of each step of M on x is matched by

advancing the cursor on the “clock” string.

– M ′ stops at the moment the “clock” string is

exhausted—even if M(x) stops before that time.

– So it is precise.

– The time bound is therefore O(|x |+ f(|x |)).
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The Proof (concluded)

• If f is a space bound:

– M ′ simulates M on the quasi-blanks of Mf ’s output

string.

– As before, M ′ stops at the moment the “clock” string

is exhausted—even if M(x) stops before that time.

– So it is again precise.

– The total space, not counting the input string, is

O(f(n)).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 198



Important Complexity Classes

• We write expressions like nk to denote the union of all

complexity classes, one for each value of k.

• For example,

NTIME(nk) =
∪
j>0

NTIME(nj).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 199



Important Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

PSPACE = SPACE(nk),

NPSPACE = NSPACE(nk),

E = TIME(2kn),

EXP = TIME(2n
k

),

L = SPACE(logn),

NL = NSPACE(logn).
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Complements of Nondeterministic Classes

• R, RE, and coRE are distinct (p. 150).

– coRE contains the complements of languages in RE,

not the languages not in RE.

• Recall that the complement of L, denoted by L̄, is the

language Σ∗ − L.

– sat complement is the set of unsatisfiable boolean

expressions.
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The Co-Classes

• For any complexity class C, coC denotes the class

{L : L̄ ∈ C}.

• Clearly, if C is a deterministic time or space complexity

class, then C = coC.
– They are said to be closed under complement.

– A deterministic TM deciding L can be converted to

one that decides L̄ within the same time or space

bound by reversing the “yes” and “no” states

(p. 147).

• Whether nondeterministic classes for time are closed

under complement is not known (p. 92).
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Comments

• As

coC = {L : L̄ ∈ C},

L ∈ C if and only if L̄ ∈ coC.

• But it is not true that L ∈ C if and only if L ̸∈ coC.
– coC is not defined as C̄.

• For example, suppose C = {{2, 4, 6, 8, 10, . . .}}.

• Then coC = {{1, 3, 5, 7, 9, . . .}}.

• But C̄ = 2{1,2,3,...}
∗ − {{2, 4, 6, 8, 10, . . .}}.
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The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf = {M ;x : M accepts input x

after at most f(|x |) steps},

where M is deterministic.

• Assume the input is binary.
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Hf ∈ TIME(f(n)3)

• For each input M ;x, we simulate M on x with an alarm

clock of length f(|x |).
– Use the single-string simulator (p. 66), the universal

TM (p. 132), and the linear speedup theorem (p. 75).

– Our simulator accepts M ;x if and only if M accepts

x before the alarm clock runs out.

• From p. 73, the total running time is O(ℓMk2Mf(n)2),

where ℓM is the length to encode each symbol or state of

M and kM is M ’s number of strings.

• As ℓMk2M = O(n), the running time is O(f(n)3), where

the constant is independent of M .
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Hf ̸∈ TIME(f(⌊n/2⌋))
• Suppose TM MHf

decides Hf in time f(⌊n/2⌋).

• Consider machine Df (M):

if MHf
(M ;M) = “yes” then “no” else “yes”

– “This sentence is false.”

• Df on input M runs in the same time as MHf
on input

M ;M , i.e., in time f(⌊ 2n+1
2 ⌋) = f(n), where n = |M |.a

aA student pointed out on October 6, 2004, that this estimation omits

the time to write down M ;M .
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The Proof (concluded)

• First,

Df (Df ) = “yes”

⇒ Df ;Df ̸∈ Hf

⇒ Df does not accept Df within time f(|Df |)

⇒ Df (Df ) ̸= “yes”

⇒ Df (Df ) = “no”

a contradiction

• Similarly, Df (Df ) = “no” ⇒ Df (Df ) = “yes.”
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The Time Hierarchy Theorem

Theorem 17 If f(n) ≥ n is proper, then

TIME(f(n)) ( TIME(f(2n+ 1)3).

• The quantified halting problem makes it so.

Corollary 18 P ( E.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 17,

TIME(2n) ( TIME((22n+1)3) ⊆ E.

• So P ( E.
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The Space Hierarchy Theorem

Theorem 19 (Hennie and Stearns (1966)) If f(n) is

proper, then

SPACE(f(n)) ( SPACE(f(n) log f(n)).

Corollary 20 L ( PSPACE.
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Nondeterministic Time Hierarchy Theorems

Theorem 21 (Cook (1973)) NTIME(nr) ( NTIME(ns)

whenever 1 ≤ r < s.

Theorem 22 (Seiferas, Fischer, and Meyer (1978)) If

T1(n), T2(n) are proper, then

NTIME(T1(n)) ( NTIME(T2(n))

whenever T1(n+ 1) = o(T2(n)).
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The Reachability Method

• The computation of a time-bounded TM can be

represented by a directed graph.

• The TM’s configurations constitute the nodes.

• Two nodes are connected by a directed edge if one yields

the other in one step.

• The start node representing the initial configuration has

zero in degree.
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The Reachability Method (concluded)

• When the TM is nondeterministic, a node may have an

out degree greater than one.

– The graph is the same as the computation tree

earlier except that identical configuration nodes are

merged into one node.

• So M accepts the input if and only if there is a path

from the start node to a node with a “yes” state.

• It is the reachability problem.
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Illustration of the Reachability Method

yes

yes
Initial

configuration
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Relations between Complexity Classes

Theorem 23 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),

TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klogn+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Specifically, generate an f(n)-bit sequence denoting

the nondeterministic choices over f(n) steps.
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Proof of Theorem 23(2)

• (continued)

– Simulate the NTM based on the choices.

– Recycle the space and repeat the above steps until a

“yes” is encountered or the tree is exhausted.

– Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.

– The total space is O(f(n)) because space is recycled.
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Proof of Theorem 23(3)

• Let k-string NTM

M = (K,Σ,∆, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph

of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).
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Proof of Theorem 23(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of

the first cursor.

• The number of configurations is therefore at most

|K| × (n+ 1)× |Σ|(2k−4)f(n) = O(c
logn+f(n)
1 ) (1)

for some c1, which depends on M .

• Add edges to the configuration graph based on M ’s

transition function.
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Proof of Theorem 23(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from

the initial configuration to a configuration of the form

(“yes”, i, . . .).a

• This is reachability on a graph with O(c
logn+f(n)
1 )

nodes.

• It is in TIME(clogn+f(n)) for some c because

reachability ∈ TIME(nj) for some j and[
c
logn+f(n)
1

]j
= (cj1)

logn+f(n).

aThere may be many of them.
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Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations earlier

(p. 89), the TMs are not required to halt at all.

• When the space is bounded by a proper function f ,

computations can be assumed to halt:

– Run the TM associated with f to produce an

quasi-blank output of length f(n) first.

– The space-bounded computation must repeat a

configuration if it runs for more than clogn+f(n) steps

for some c (p. 217).

– So we can prevent infinite loops during simulation by

pruning any path longer than clogn+f(n).
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A Grand Chain of Inclusionsa

• It is an easy application of Theorem 23 (p. 214) that

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• By Corollary 20 (p. 209), we know L ( PSPACE.

• So the chain must break somewhere between L and EXP.

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.

aWith input from Mr. Chin-Luei Chang (R93922004, D95922007) on

October 22, 2004.
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Nondeterministic Space and Deterministic Space

• By Theorem 4 (p. 97),

NTIME(f(n)) ⊆ TIME(cf(n)),

an exponential gap.

• There is no proof yet that the exponential gap is

inherent.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic—a

polynomial—by Savitch’s theorem.
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Savitch’s Theorem

Theorem 24 (Savitch (1970))

reachability ∈ SPACE(log2 n).

• Let G(V,E) be a graph with n nodes.

• For i ≥ 0, let

PATH(x, y, i)

mean there is a path from node x to node y of length at

most 2i.

• There is a path from x to y if and only if

PATH(x, y, ⌈log n⌉)

holds.
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The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i− 1) and PATH(z, y, i− 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, ⌈log n⌉) with a depth-first search

on a graph with nodes (x, y, z, i)s (see next page).a

• Like stacks in recursive calls, we keep only the current

path of (x, y, i)s.

• The space requirement is proportional to the depth of

the tree: ⌈log n⌉.
aContributed by Mr. Chuan-Yao Tan on October 11, 2011.
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The Proof (continued): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ E then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i− 1) and PATH(z, y, i− 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if
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The Proof (concluded)

3$7+�[�\�ORJ�Q�

3$7+�[�]�ORJ�Q��� 3$7+�]�\�ORJ�Q���

Ø\HVÙ
ØQRÙ

ØQRÙ

• Depth is ⌈log n⌉, and each node (x, y, z, i) needs space

O(log n).

• The total space is O(log2 n).
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The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 25 Let f(n) ≥ log n be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s proof to the configuration graph of the

NTM on the input.

• From p. 217, the configuration graph has O(cf(n))

nodes; hence each node takes space O(f(n)).

• But if we construct explicitly the whole graph before

applying Savitch’s theorem, we get O(cf(n)) space!
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The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• In fact, we check node connectedness only when i = 0 on

p. 224, by examining the input string G.

• There, given configurations x and y, we go over the

Turing machine’s program to determine if there is an

instruction that can turn x into y in one step.a

aThanks to a lively class discussion on October 15, 2003.
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The Proof (concluded)

• The z variable in the algorithm on p. 224 simply runs

through all possible valid configurations.

– Let z = 0, 1, . . . , O(cf(n)).

– Make sure z is a valid configuration before using it in

the recursive calls.a

• Each z has length O(f(n)) by Eq. (1) on p. 217.

• So each node needs space O(f(n)).

• As the depth of the recursive call on p. 224 is

O(log cf(n)), the total space is therefore O(f2(n)).

aThanks to a lively class discussion on October 13, 2004.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 228



Implications of Savitch’s Theorem

• PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• Nondeterminism may be very powerful with respect to

time as it is not known if P = NP.
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Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for

deterministic complexity classes (p. 202).

• It is known thata

coNSPACE(f(n)) = NSPACE(f(n)). (2)

• So

coNL = NL,

coNPSPACE = NPSPACE.

• But it is not known whether coNP = NP.

aSzelepscényi (1987) and Immerman (1988).
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