Theory of Computation

Final-Term Examination on January 10, 2012 Fall Semester, 2011 Note: You may use any results proved in class.

Problem 1 (25 points). Prove that L is **NP**-complete if and only if its complement \overline{L} is **coNP**-complete.

Solution.

- ⇒ Let *L* be an **NP**-complete language; thus $L \in \mathbf{NP}$. For all $L' \in \mathbf{NP}$, let *R* be a reduction form *L'* to *L*. Problem instance $x \in L' \Leftrightarrow R(x) \in L$. Equivalently, $x \notin L' \Leftrightarrow R(x) \notin L$ (the law of transposition). So $x \in \overline{L'} \Leftrightarrow R(x) \in \overline{L}$. *R* is a reduction from $\overline{L'}$ to \overline{L} . Hence \overline{L} is **coNP**-complete.
- \Leftarrow Let \overline{L} be a **coNP**-complete language; thus $\overline{L} \in$ **coNP**. For all $\overline{L'} \in$ **coNP**, let R be a reduction form $\overline{L'}$ to \overline{L} . Problem instance $x \in \overline{L'} \Leftrightarrow$ $R(x) \in \overline{L}$. Equivalently, $x \notin \overline{L'} \Leftrightarrow R(x) \notin \overline{L}$ (the law of transposition). So $x \in L' \Leftrightarrow R(x) \in L$. R is a reduction from L' to L. Hence L is **NP**-complete.

Problem 2 (25 points). The Jacobi symbol $(a \mid m)$ is the extension of the Legendre symbol $(a \mid p)$, where p is an odd prime, and

$$(a \mid p) = \begin{cases} 0 & \text{if } (p \mid a), \\ 1 & \text{if } a \text{ is a quadratic residue module } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue module } p. \end{cases}$$

Recall that when m > 1 is odd and gcd(a, m) = 1, then $(a \mid m) = \prod_{i=1}^{k} (a \mid p_i)$. Please calculate (1234 | 99). Please write down the steps leading to your answer. Solution.

$$(1234 | 99) = (46 | 99) = (46 | 9) (46 | 11) = (1 | 9) (2 | 11) = 1 \cdot (-1)^{\frac{11^2 - 1}{8}} = (-1)^{15} = -1$$

Problem 3 (25 points). Let $\mu \equiv E[X]$ and $\sigma^2 \equiv E[(X - \mu)^2]$ be finite. Show that

$$\operatorname{prob}[|X - \mu| \ge k\sigma] \le 1/k^2$$

for $k \ge 0$.

(Hints: The Markov inequality says: $\operatorname{prob}[Y \ge m] \le E[Y]/m$ if random variable Y takes on only nonnegative values and $m \ge 0$. Try $Y = (X - \mu)^2$.)

Solution. Let $Y = (X - \mu)^2$ and $m = (k\sigma)^2$. Then

$$\operatorname{prob}[Y \ge m] \le \frac{E[Y]}{m}$$

$$\Leftrightarrow \operatorname{prob}[(X-\mu)^2 \ge (k\sigma)^2] \le \frac{\sigma^2}{(k\sigma)^2}$$
$$\Leftrightarrow \operatorname{prob}[\sqrt{(X-\mu)^2} \ge \sqrt{(k\sigma)^2}] \le \frac{\not{\sigma^2}}{k^2 \not{\sigma^2}}$$
$$\Leftrightarrow \operatorname{prob}[|X-\mu| \ge k\sigma] \le \frac{1}{k^2}.$$

The last line is due to Markov's inequality because $(X - \mu)^2$ is a nonegative value and $(k\sigma)^2 \ge 0$.

Problem 4 (25 points). Please define RP and prove that $RP \subseteq NP$.

Solution. RP is the class of all languages L with a (precise) polynomial-time Monte Carlo TM M such that

If
$$x \in L$$
, then $\operatorname{Prob}[M(x) = "\operatorname{Yes"}] \ge \frac{1}{2}$. (1)

If
$$x \notin L$$
, then $\operatorname{Prob}[M(x) = \text{``No''}] = 1$.

If L in RP and $x \in L$, then there exists a sequence of coin flips f such that M accepts x with f as the nondeterministic choices by (1). If $x \notin L$, the Prob[M(x) = "Yes"] = 0. So M rejects x. So $L \in NP$.