Theory of Computation

Final-Term Examination on January 10, 2012

Fall Semester, 2011
Note: You may use any results proved in class.
Problem 1 (25 points). Prove that L is NP-complete if and only if its complement \bar{L} is coNP-complete.

Solution.
\Rightarrow Let L be an NP-complete language; thus $L \in \mathbf{N P}$. For all $L^{\prime} \in \mathbf{N P}$, let R be a reduction form L^{\prime} to L. Problem instance $x \in L^{\prime} \Leftrightarrow R(x) \in L$. Equivalently, $x \notin L^{\prime} \Leftrightarrow R(x) \notin L$ (the law of transposition). So $x \in \bar{L}^{\prime} \Leftrightarrow R(x) \in \bar{L} . \quad R$ is a reduction from \bar{L}^{\prime} to \bar{L}. Hence \bar{L} is coNP-complete.
\Leftarrow Let \bar{L} be a coNP-complete language; thus $\bar{L} \in \operatorname{coNP}$. For all $\bar{L}^{\prime} \in$ coNP, let R be a reduction form \bar{L}^{\prime} to \bar{L}. Problem instance $x \in \bar{L}^{\prime} \Leftrightarrow$ $R(x) \in \bar{L}$. Equivalently, $x \notin \bar{L}^{\prime} \Leftrightarrow R(x) \notin \bar{L}$ (the law of transposition). So $x \in L^{\prime} \Leftrightarrow R(x) \in L$. R is a reduction from L^{\prime} to L. Hence L is NP-complete.

Problem 2 (25 points). The Jacobi symbol $(a \mid m)$ is the extension of the Legendre symbol $(a \mid p)$, where p is an odd prime, and

$$
(a \mid p)= \begin{cases}0 & \text { if }(p \mid a) \\ 1 & \text { if } a \text { is a quadratic residue module } p \\ -1 & \text { if } a \text { is a quadratic nonresidue module } p\end{cases}
$$

Recall that when $m>1$ is odd and $\operatorname{gcd}(a, m)=1$, then $(a \mid m)=\prod_{i=1}^{k}\left(a \mid p_{i}\right)$. Please calculate (1234|99). Please write down the steps leading to your answer.

Solution.
$(1234 \mid 99)=(46 \mid 99)=(46 \mid 9)(46 \mid 11)=(1 \mid 9)(2 \mid 11)=1 \cdot(-1)^{\frac{11^{2}-1}{8}}=(-1)^{15}=-1$

Problem 3 (25 points). Let $\mu \equiv E[X]$ and $\sigma^{2} \equiv E\left[(X-\mu)^{2}\right]$ be finite. Show that

$$
\operatorname{prob}[|X-\mu| \geq k \sigma] \leq 1 / k^{2}
$$

for $k \geq 0$.
(Hints: The Markov inequality says: $\operatorname{prob}[Y \geq m] \leq E[Y] / m$ if random variable Y takes on only nonnegative values and $m \geq 0$. Try $Y=(X-\mu)^{2}$.)

Solution. Let $Y=(X-\mu)^{2}$ and $m=(k \sigma)^{2}$. Then

$$
\begin{aligned}
& \quad \operatorname{prob}[Y \geq m] \leq \frac{E[Y]}{m} \\
& \Leftrightarrow \operatorname{prob}\left[(X-\mu)^{2} \geq(k \sigma)^{2}\right] \leq \frac{\sigma^{2}}{(k \sigma)^{2}} \\
& \Leftrightarrow \operatorname{prob}\left[\sqrt{(X-\mu)^{2}} \geq \sqrt{(k \sigma)^{2}}\right] \leq \frac{\beta^{2}}{k^{2}{\sigma^{2}}^{2}} \\
& \Leftrightarrow \operatorname{prob}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}} .
\end{aligned}
$$

The last line is due to Markov's inequality because $(X-\mu)^{2}$ is a nonegative value and $(k \sigma)^{2} \geq 0$.

Problem 4 (25 points). Please define RP and prove that RP \subseteq NP.
Solution. RP is the class of all languages L with a (precise) polynomial-time Monte Carlo TM M such that

If $x \in L$, then $\operatorname{Prob}[M(x)=$ "Yes" $] \geq \frac{1}{2}$.

$$
\begin{equation*}
\text { If } x \notin L \text {, then } \operatorname{Prob}[M(x)=" \text { No" }]=1 \text {. } \tag{1}
\end{equation*}
$$

If L in RP and $x \in L$, then there exists a sequence of coin flips f such that M accepts x with f as the nondeterministic choices by (1). If $x \notin L$, the $\operatorname{Prob}[M(x)=" Y e s "]=0$. So M rejects x. So $L \in$ NP.

