Theory of Computation

Final-Term Examination on January 10, 2012 Fall Semester, 2011

Note: You may use any results proved in class.

Problem 1 (25 points). Prove that L is **NP**-complete if and only if its complement \overline{L} is **coNP**-complete.

Problem 2 (25 points). The Jacobi symbol $(a \mid m)$ is the extension of the Legendre symbol $(a \mid p)$, where p is an odd prime, and

$$(a \mid p) = \begin{cases} 0 & \text{if } (p \mid a), \\ 1 & \text{if } a \text{ is a quadratic residue module } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue module } p. \end{cases}$$

Recall that when m > 1 is odd and gcd(a, m) = 1, then $(a \mid m) = \prod_{i=1}^{k} (a \mid p_i)$. Please calculate (1234 | 99). Please write down the steps leading to your answer.

Problem 3 (25 points). Let $\mu \equiv E[X]$ and $\sigma^2 \equiv E[(X - \mu)^2]$ be finite. Show that

$$\operatorname{prob}[|X - \mu| \ge k\sigma] \le 1/k^2$$

for $k \geq 0$.

(Hints: The Markov inequality says: $\operatorname{prob}[Y \ge m] \le E[Y]/m$ if random variable Y takes on only nonnegative values and $m \ge 0$. Try $Y = (X - \mu)^2$.)

Problem 4 (25 points). Please define RP and prove that $RP \subseteq NP$.