## Approximability

> And by the way
> it is possible that P = NP. - Stephen Cook (1998)

## Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are approximation algorithms.
- How good are the approximations?
- We are looking for theoretically guaranteed bounds, not "empirical" bounds.
- Are there NP problems that cannot be approximated well (assuming NP $\neq \mathrm{P}$ )?
- Are there NP problems that cannot be approximated at all (assuming NP $\neq \mathrm{P}$ )?


## Some Definitions

- Given an optimization problem, each problem instance $x$ has a set of feasible solutions $F(x)$.
- Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^{+}$.
- Here, cost refers to the quality of the feasible solution, not the time required to obtain it.
- It is our objective function, e.g., total distance, satisfaction, or cut size.
- The optimum cost is $\operatorname{OPT}(x)=\min _{s \in F(x)} c(s)$ for a minimization problem.
- It is $\operatorname{OPT}(x)=\max _{s \in F(x)} c(s)$ for a maximization problem.


## Approximation Algorithms

- Let algorithm $M$ on $x$ returns a feasible solution.
- $M$ is an $\epsilon$-approximation algorithm, where $\epsilon \geq 0$, if for all $x$,

$$
\frac{|c(M(x))-\operatorname{OPT}(x)|}{\max (\operatorname{OPT}(x), c(M(x)))} \leq \epsilon
$$

- For a minimization problem,

$$
\frac{c(M(x))-\min _{s \in F(x)} c(s)}{c(M(x))} \leq \epsilon
$$

- For a maximization problem,

$$
\begin{equation*}
\frac{\max _{s \in F(x)} c(s)-c(M(x))}{\max _{s \in F(x)} c(s)} \leq \epsilon \tag{10}
\end{equation*}
$$

## Lower and Upper Bounds

- For a minimization problem,

$$
\min _{s \in F(x)} c(s) \leq c(M(x)) \leq \frac{\min _{s \in F(x)} c(s)}{1-\epsilon}
$$

- So approximation ratio $\frac{\min _{s \in F(x)} c(s)}{c(M(x))} \geq 1-\epsilon$.
- For a maximization problem,

$$
\begin{equation*}
(1-\epsilon) \times \max _{s \in F(x)} c(s) \leq c(M(x)) \leq \max _{s \in F(x)} c(s) \tag{11}
\end{equation*}
$$

- So approximation ratio $\frac{c(M(x))}{\max _{s \in F(x)} c(s)} \geq 1-\epsilon$.


## Range Bounds

- $\epsilon$ takes values between 0 and 1 .
- For maximization problems, an $\epsilon$-approximation algorithm returns solutions within $[(1-\epsilon) \times$ OPT, OPT $]$.
- For minimization problems, an $\epsilon$-approximation algorithm returns solutions within $\left[\mathrm{OPT}, \frac{\mathrm{OPT}}{1-\epsilon}\right]$.
- For each NP-complete optimization problem, we shall be interested in determining the smallest $\epsilon$ for which there is a polynomial-time $\epsilon$-approximation algorithm.
- Sometimes $\epsilon$ has no minimum value.


## Approximation Thresholds

- The approximation threshold is the greatest lower bound of all $\epsilon \geq 0$ such that there is a polynomial-time $\epsilon$-approximation algorithm.
- The approximation threshold of an optimization problem can be anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If $\mathrm{P}=\mathrm{NP}$, then all optimization problems in NP have an approximation threshold of 0 .
- So we assume $\mathrm{P} \neq \mathrm{NP}$ for the rest of the discussion.


## NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph $G=(V, E)$ such that for each edge in $E$, at least one of its endpoints is in $C$.
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce

$$
\frac{\mathrm{OPT}(x)}{c(M(x))}=\Theta\left(\log ^{-1} n\right)
$$

- Hence the approximation ratio is $\Theta\left(\log ^{-1} n\right)$.
- It is not an $\epsilon$-approximation algorithm for any constant $\epsilon<1$.


## A 0.5-Approximation Algorithm ${ }^{\text {a }}$

1: $C:=\emptyset$;
2: while $E \neq \emptyset$ do
3: Delete an arbitrary edge $\{u, v\}$ from $E$;
4: $\quad$ Add $u$ and $v$ to $C$; \{Add 2 nodes to $C$ each time.\}
5: $\quad$ Delete edges incident with $u$ and $v$ from $E$;
6: end while
7: return $C$;
${ }^{\mathrm{a}}$ Johnson (1974).

## Analysis

- It is easy to see that $C$ is a node cover.
- $C$ contains $|C| / 2$ edges.
- No two edges of $C$ share a node. ${ }^{\text {a }}$
- Any node cover must contain at least one node from each of these edges.
${ }^{\text {a }}$ In fact, $C$ as a set of edges is a maximal matching.


## Analysis (concluded)

- This means that opt $(G) \geq|C| / 2$.
- So the approximation ratio

$$
\frac{\operatorname{OPT}(G)}{|C|} \geq 1 / 2
$$

- The approximation threshold is $\leq 0.5$. $^{\text {a }}$
${ }^{\text {a }} 0.5$ is also the lower bound for any "greedy" algorithms (see Davis and Impagliazzo (2004)).



## The 0.5 Bound Is Tight for the Algorithm ${ }^{\text {a }}$



[^0]
## Maximum Satisfiability

- Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most.
- MAX2SAT is already NP-complete (p. 294), so MAXSAT is NP-complete.
- Consider the more general $k$-maxgsat for constant $k$.
- Given a set of boolean expressions $\Phi=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right\}$ in $n$ variables.
- Each $\phi_{i}$ is a general expression involving $k$ variables.
- $k$-MAXGSAT seeks the truth assignment that satisfies the most expressions.


## A Probabilistic Interpretation of an Algorithm

- Each $\phi_{i}$ involves exactly $k$ variables and is satisfied by $s_{i}$ of the $2^{k}$ truth assignments.
- A random truth assignment $\in\{0,1\}^{n}$ satisfies $\phi_{i}$ with probability $p\left(\phi_{i}\right)=s_{i} / 2^{k}$.
- $p\left(\phi_{i}\right)$ is easy to calculate as $k$ is a constant.
- Hence a random truth assignment satisfies an expected number

$$
p(\Phi)=\sum_{i=1}^{m} p\left(\phi_{i}\right)
$$

of expressions $\phi_{i}$.

## The Search Procedure

- Clearly

$$
p(\Phi)=\frac{1}{2}\left\{p\left(\Phi\left[x_{1}=\text { true }\right]\right)+p\left(\Phi\left[x_{1}=\text { false }\right]\right)\right\}
$$

- Select the $t_{1} \in\{$ true, false $\}$ such that $p\left(\Phi\left[x_{1}=t_{1}\right]\right)$ is the larger one.
- Note that $p\left(\Phi\left[x_{1}=t_{1}\right]\right) \geq p(\Phi)$.
- Repeat with expression $\Phi\left[x_{1}=t_{1}\right]$ until all variables $x_{i}$ have been given truth values $t_{i}$ and all $\phi_{i}$ either true or false.


## The Search Procedure (concluded)

- By our hill-climbing procedure,

$$
\begin{aligned}
& p(\Phi) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}\right]\right) \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}\right]\right) \\
\leq & \cdots \\
\leq & p\left(\Phi\left[x_{1}=t_{1}, x_{2}=t_{2}, \ldots, x_{n}=t_{n}\right]\right) .
\end{aligned}
$$

- So at least $p(\Phi)$ expressions are satisfied by truth assignment $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
- The algorithm is deterministic.


## Approximation Analysis

- The optimum is at most the number of satisfiable $\phi_{i}$-i.e., those with $p\left(\phi_{i}\right)>0$.
- Hence the ratio of algorithm's output vs. the optimum is

$$
\geq \frac{p(\Phi)}{\sum_{p\left(\phi_{i}\right)>0} 1}=\frac{\sum_{i} p\left(\phi_{i}\right)}{\sum_{p\left(\phi_{i}\right)>0} 1} \geq \min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)
$$

- The heuristic is a polynomial-time $\epsilon$-approximation algorithm with $\epsilon=1-\min _{p\left(\phi_{i}\right)>0} p\left(\phi_{i}\right)$.
- Because $p\left(\phi_{i}\right) \geq 2^{-k}$, the heuristic is a polynomial-time $\epsilon$-approximation algorithm with $\epsilon=1-2^{-k}$.


## Back to maxsat

- In maxsat, the $\phi_{i}$ 's are clauses.
- Hence $p\left(\phi_{i}\right) \geq 1 / 2$, which happens when $\phi_{i}$ contains a single literal.
- And the heuristic becomes a polynomial-time $\epsilon$-approximation algorithm with $\epsilon=1 / 2$. ${ }^{\text {a }}$
- If the clauses have $k$ distinct literals, $p\left(\phi_{i}\right)=1-2^{-k}$.
- And the heuristic becomes a polynomial-time $\epsilon$-approximation algorithm with $\epsilon=2^{-k}$.
- This is the best possible for $k \geq 3$ unless $\mathrm{P}=\mathrm{NP}$.

[^1]
## MAX CUT Revisited

- The NP-complete max cut seeks to partition the nodes of graph $G=(V, E)$ into $(S, V-S)$ so that there are as many edges as possible between $S$ and $V-S$ (p. 322).
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local search algorithm for max cut.


## A 0.5-Approximation Algorithm for MAX CUT

1: $S:=\emptyset$;
2: while $\exists v \in V$ whose switching sides results in a larger cut do
3: $\quad$ Switch the side of $v$;
4: end while
5: return $S$;

- A 0.12-approximation algorithm exists. ${ }^{\text {a }}$
- 0.059-approximation algorithms do not exist unless NP = ZPP.

[^2]

## Analysis (continued)

- Partition $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where
- Our algorithm returns $\left(V_{1} \cup V_{2}, V_{3} \cup V_{4}\right)$.
- The optimum cut is $\left(V_{1} \cup V_{3}, V_{2} \cup V_{4}\right)$.
- Let $e_{i j}$ be the number of edges between $V_{i}$ and $V_{j}$.
- For each node $v \in V_{1}$, its edges to $V_{1} \cup V_{2}$ are outnumbered by those to $V_{3} \cup V_{4}$.
- Otherwise, $v$ would have been moved to $V_{3} \cup V_{4}$ to improve the cut.


## Analysis (continued)

- Considering all nodes in $V_{1}$ together, we have $2 e_{11}+e_{12} \leq e_{13}+e_{14}$
- It is $2 e_{11}$ is because each edge in $V_{1}$ is counted twice.
- The above inequality implies

$$
e_{12} \leq e_{13}+e_{14} .
$$

## Analysis (concluded)

- Similarly,

$$
\begin{aligned}
e_{12} & \leq e_{23}+e_{24} \\
e_{34} & \leq e_{23}+e_{13} \\
e_{34} & \leq e_{14}+e_{24}
\end{aligned}
$$

- Add all four inequalities, divide both sides by 2 , and add the inequality $e_{14}+e_{23} \leq e_{14}+e_{23}+e_{13}+e_{24}$ to obtain

$$
e_{12}+e_{34}+e_{14}+e_{23} \leq 2\left(e_{13}+e_{14}+e_{23}+e_{24}\right)
$$

- The above says our solution is at least half the optimum.


## Approximability, Unapproximability, and Between

- KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have approximation thresholds less than 1.
- KNAPSACK has a threshold of 0 (p. 658).
- But node cover and maxsat have a threshold larger than 0 .
- The situation is maximally pessimistic for TSP, which cannot be approximated (p. 656).
- The approximation threshold of TSP is 1.
* The threshold is $1 / 3$ if the TSP satisfies the triangular inequality.
- The same holds for INDEPENDENT SET.


## Unapproximability of $\mathrm{TSP}^{\mathrm{a}}$

Theorem 77 The approximation threshold of TSP is 1 unless $P=N P$.

- Suppose there is a polynomial-time $\epsilon$-approximation algorithm for TSP for some $\epsilon<1$.
- We shall construct a polynomial-time algorithm for the NP-complete hamiltonian cycle.
- Given any graph $G=(V, E)$, construct a TSP with $|V|$ cities with distances

$$
d_{i j}=\left\{\begin{array}{cl}
1, & \text { if }\{i, j\} \in E \\
\frac{|V|}{1-\epsilon}, & \text { otherwise }
\end{array}\right.
$$

[^3]
## The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost $|V|$ is returned.
- This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned.
- The total length of this tour is $>\frac{|V|}{1-\epsilon}$.
- Because the algorithm is $\epsilon$-approximate, the optimum is at least $1-\epsilon$ times the returned tour's length.
- The optimum tour has a cost exceeding $|V|$.
- Hence $G$ has no Hamiltonian cycles.

KNAPSACK Has an Approximation Threshold of Zero ${ }^{a}$
Theorem 78 For any $\epsilon$, there is a polynomial-time $\epsilon$-approximation algorithm for KNAPSACK.

- We have $n$ weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}^{+}$, a weight limit $W$, and $n$ values $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{Z}^{+}$. ${ }^{\text {b }}$
- We must find an $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i}$ is the largest possible.
${ }^{\text {a }}$ Ibarra and $\operatorname{Kim}$ (1975).
${ }^{\mathrm{b}}$ If the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (R92922045) on December 29, 2004.


## The Proof (continued)

- Let

$$
V=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Clearly, $\sum_{i \in S} v_{i} \leq n V$.
- Let $0 \leq i \leq n$ and $0 \leq v \leq n V$.
- $W(i, v)$ is the minimum weight attainable by selecting some of the first $i$ items with a total value of $v$.
- Set $W(0, v)=\infty$ for $v \in\{1,2, \ldots, n V\}$ and $W(i, 0)=0$ for $i=0,1, \ldots, n$. ${ }^{\text {a }}$

[^4]
## The Proof (continued)

- Then, for $0 \leq i<n$,

$$
W(i+1, v)=\min \left\{W(i, v), W\left(i, v-v_{i+1}\right)+w_{i+1}\right\}
$$

- Finally, pick the largest $v$ such that $W(n, v) \leq W$.
- The running time is $O\left(n^{2} V\right)$, not polynomial time.
- Key idea: Limit the number of precision bits.


## The Proof (continued)

- Define

$$
v_{i}^{\prime}=2^{b}\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor .
$$

- This is equivalent to zeroing each $v_{i}$ 's last $b$ bits.
- From the original instance

$$
x=\left(w_{1}, \ldots, w_{n}, W, v_{1}, \ldots, v_{n}\right)
$$

define the approximate instance

$$
x^{\prime}=\left(w_{1}, \ldots, w_{n}, W, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)
$$

## The Proof (continued)

- Solving $x^{\prime}$ takes time $O\left(n^{2} V / 2^{b}\right)$.
- The algorithm only performs subtractions on the $v_{i}$-related values.
- So the $b$ last bits can be removed from the calculations.
- That is, use $v_{i}^{\prime}=\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor$ and $V=\left\lfloor\frac{\max \left(v_{1}, v_{2}, \ldots, v_{n}\right)}{2^{b}}\right\rfloor$ in the calculations.
- Then multiply the returned value by $2^{b}$.
- The solution $S^{\prime}$ is close to the optimum solution $S$ :

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S^{\prime}} v_{i}^{\prime} \geq \sum_{i \in S} v_{i}^{\prime} \geq \sum_{i \in S}\left(v_{i}-2^{b}\right) \geq \sum_{i \in S} v_{i}-n 2^{b} .
$$

## The Proof (continued)

- Hence

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S} v_{i}-n 2^{b}
$$

- Without loss of generality, assume $w_{i} \leq W$ for all $i$.
- Otherwise, item $i$ is redundant.
- $V$ is a lower bound on OPT.
- Picking an item with value $V$ is a legitimate choice.
- The relative error from the optimum is $\leq n 2^{b} / V$ :

$$
\frac{\sum_{i \in S} v_{i}-\sum_{i \in S^{\prime}} v_{i}}{\sum_{i \in S} v_{i}} \leq \frac{\sum_{i \in S} v_{i}-\sum_{i \in S^{\prime}} v_{i}}{V} \leq \frac{n 2^{b}}{V}
$$

## The Proof (concluded)

- Suppose we pick $b=\left\lfloor\log _{2} \frac{\epsilon V}{n}\right\rfloor$.
- The algorithm becomes $\epsilon$-approximate (see Eq. (10) on p. 633).
- The running time is then $O\left(n^{2} V / 2^{b}\right)=O\left(n^{3} / \epsilon\right)$, a polynomial in $n$ and $1 / \epsilon$. ${ }^{\text {a }}$
${ }^{\text {a }}$ It hence depends on the value of $1 / \epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix $\epsilon$ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.


## Pseudo-Polynomial-Time Algorithms

- Consider problems with inputs that consist of a collection of integer parameters (TSP, KNAPSACK, etc.).
- An algorithm for such a problem whose running time is a polynomial of the input length and the value (not length) of the largest integer parameter is a pseudo-polynomial-time algorithm. ${ }^{\text {a }}$
- On p. 660, we presented a pseudo-polynomial-time algorithm for KNAPSACK that runs in time $O\left(n^{2} V\right)$.
- How about TSP (D), another NP-complete problem?

[^5]
## No Pseudo-Polynomial-Time Algorithms for TSP (D)

- By definition, a pseudo-polynomial-time algorithm becomes polynomial-time if each integer parameter is limited to having a value polynomial in the input length.
- Corollary 43 (p. 339) showed that hamiltonian path is reducible to TSP (D) with weights 1 and 2.
- As hamiltonian path is NP-complete, tsp (d) cannot have pseudo-polynomial-time algorithms unless $\mathrm{P}=\mathrm{NP}$.
- TSP (D) is said to be strongly NP-hard.
- Many weighted versions of NP-complete problems are strongly NP-hard.


## Polynomial-Time Approximation Scheme

- Algorithm $M$ is a polynomial-time approximation scheme (PTAS) for a problem if:
- For each $\epsilon>0$ and instance $x$ of the problem, $M$ runs in time polynomial (depending on $\epsilon$ ) in $|x|$. * Think of $\epsilon$ as a constant.
- $M$ is an $\epsilon$-approximation algorithm for every $\epsilon>0$.


## Fully Polynomial-Time Approximation Scheme

- A polynomial-time approximation scheme is fully polynomial (FPTAS) if the running time depends polynomially on $|x|$ and $1 / \epsilon$.
- Maybe the best result for a "hard" problem.
- For instance, KNAPSACK is fully polynomial with a running time of $O\left(n^{3} / \epsilon\right)$ (p. 658).


## Square of $G$

- Let $G=(V, E)$ be an undirected graph.
- $G^{2}$ has nodes $\left\{\left(v_{1}, v_{2}\right): v_{1}, v_{2} \in V\right\}$ and edges

$$
\left\{\left\{\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right\}:\left(u=v \wedge\left\{u^{\prime}, v^{\prime}\right\} \in E\right) \vee\{u, v\} \in E\right\} .
$$



## Independent Sets of $G$ and $G^{2}$

Lemma $79 G(V, E)$ has an independent set of size $k$ if and only if $G^{2}$ has an independent set of size $k^{2}$.

- Suppose $G$ has an independent set $I \subseteq V$ of size $k$.
- $\{(u, v): u, v \in I\}$ is an independent set of size $k^{2}$ of $G^{2}$.



## The Proof (continued)

- Suppose $G^{2}$ has an independent set $I^{2}$ of size $k^{2}$.
- $U \equiv\left\{u: \exists v \in V(u, v) \in I^{2}\right\}$ is an independent set of $G$.

- $|U|$ is the number of "rows" that the nodes in $I^{2}$ occupy.


## The Proof (concluded) ${ }^{\text {a }}$

- If $|U| \geq k$, then we are done.
- Now assume $|U|<k$.
- As the $k^{2}$ nodes in $I^{2}$ cover fewer than $k$ "rows," there must be a "row" in possession of $>k$ nodes of $I^{2}$.
- Those $>k$ nodes will be independent in $G$ as each "row" is a copy of $G$.
${ }^{\text {a }}$ Thanks to a lively class discussion on December 29, 2004.


## Approximability of INDEPENDENT SET

- The approximation threshold of the maximum independent set is either zero or one (it is one!).

Theorem 80 If there is a polynomial-time $\epsilon$-approximation algorithm for INDEPENDENT SET for any $0<\epsilon<1$, then there is a polynomial-time approximation scheme.

- Let $G$ be a graph with a maximum independent set of size $k$.
- Suppose there is an $O\left(n^{i}\right)$-time $\epsilon$-approximation algorithm for INDEPENDENT SET.
- We seek a polynomial-time $\epsilon^{\prime}$-approximation algorithm with $\epsilon^{\prime}<\epsilon$.


## The Proof (continued)

- By Lemma 79 (p. 670), the maximum independent set of $G^{2}$ has size $k^{2}$.
- Apply the algorithm to $G^{2}$.
- The running time is $O\left(n^{2 i}\right)$.
- The resulting independent set has size $\geq(1-\epsilon) k^{2}$.
- By the construction in Lemma 79 (p. 670), we can obtain an independent set of size $\geq \sqrt{(1-\epsilon) k^{2}}$ for $G$.
- Hence there is a $(1-\sqrt{1-\epsilon})$-approximation algorithm for independent set by Eq. (11) on p. 634.


## The Proof (concluded)

- In general, we can apply the algorithm to $G^{2^{\ell}}$ to obtain an $\left(1-(1-\epsilon)^{2^{-\ell}}\right)$-approximation algorithm for INDEPENDENT SET.

- Now pick $\ell=\left\lceil\log \frac{\log (1-\epsilon)}{\log \left(1-\epsilon^{\prime}\right)}\right\rceil$.
- The running time becomes $n^{i \frac{\log (1-\epsilon)}{\log (1-\epsilon)}}$.
- It is an $\epsilon^{\prime}$-approximation algorithm for INDEPENDENT SET.
${ }^{\mathrm{a}}$ It is not fully polynomial.


## Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 40, p. 316).
- NODE COVER has an approximation threshold at most 0.5 (p. 639).
- But independent set is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called $k$-DEGREE INDEPENDENT SET.
- $k$-DEGREE INDEPENDENT SET is approximable (see the textbook).


## On P vs. NP

## Density ${ }^{\text {a }}$

The density of language $L \subseteq \Sigma^{*}$ is defined as

$$
\operatorname{dens}_{L}(n)=|\{x \in L:|x| \leq n\}| .
$$

- If $L=\{0,1\}^{*}$, then $\operatorname{dens}_{L}(n)=2^{n+1}-1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq\{0\}^{*}$,

$$
\operatorname{dens}_{L}(n) \leq n+1 .
$$

- Because $L \subseteq\{\epsilon, 0,00, \ldots, \overbrace{00 \cdots 0}^{n}, \ldots\}$.

[^6]
## Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- Dense languages are languages with superpolynomial density functions.


## Self-Reducibility for SAT

- An algorithm exhibits self-reducibility if it finds a certificate by exploiting algorithms for the decision version of the same problem.
- Let $\phi$ be a boolean expression in $n$ variables $x_{1}, x_{2}, \ldots, x_{n}$.
- $t \in\{0,1\}^{j}$ is a partial truth assignment for $x_{1}, x_{2}, \ldots, x_{j}$.
- $\phi[t]$ denotes the expression after substituting the truth values of $t$ for $x_{1}, x_{2}, \ldots, x_{|t|}$ in $\phi$.


## An Algorithm for Sat with Self-Reduction

We call the algorithm below with empty $t$.
1: if $|t|=n$ then
2: return $\phi[t]$;
3: else
4: $\quad$ return $\phi[t 0] \vee \phi[t 1]$;
5: end if
The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth- $n$ binary tree).

## NP-Completeness and Density ${ }^{\text {a }}$

Theorem 81 If a unary language $U \subseteq\{0\}^{*}$ is $N P$-complete, then $P=N P$.

- Suppose there is a reduction $R$ from sat to $U$.
- We use $R$ to find a truth assignment that satisfies boolean expression $\phi$ with $n$ variables if it is satisfiable.
- Specifically, we use $R$ to prune the exponential-time exhaustive search on p. 681.
- The trick is to keep the already discovered results $\phi[t]$ in a table $H$.
${ }^{\text {a }}$ Berman (1978).

```
1: if }|t|=n\mathrm{ then
2: return }\phi[t]
3: else
4: if (R(\phi[t]),v) is in table H then
5: return v;
6: else
7: if \phi[t0]="satisfiable" or }\phi[t1]=\mathrm{ "satisfiable" then
8: Insert (R(\phi[t]), "satisfiable") into H;
9: return "satisfiable";
10: else
11: Insert (R(\phi[t]), "unsatisfiable") into H;
12: return "unsatisfiable";
13: end if
14: end if
15: end if
```


## The Proof (continued)

- Since $R$ is a reduction, $R(\phi[t])=R\left(\phi\left[t^{\prime}\right]\right)$ implies that $\phi[t]$ and $\phi\left[t^{\prime}\right]$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because $R$ runs in log space.
- As $R$ maps to unary numbers, there are only polynomially many $p(n)$ values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.


## The Proof (continued)

- A search of the table takes time $O(p(n))$ in the random access memory model.
- The running time is $O(M p(n))$, where $M$ is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most $n$.


## The Proof (continued)

- There is a set $T=\left\{t_{1}, t_{2}, \ldots\right\}$ of invocations (partial truth assignments, i.e.) such that:

1. $|T| \geq(M-1) /(2 n)$.
2. All invocations in $T$ are recursive (nonleaves).
3. None of the elements of $T$ is a prefix of another.


## The Proof (continued)

- All invocations $t \in T$ have different $R(\phi[t])$ values.
- None of $h, j \in T$ is a prefix of the other.
- The invocation of one started after the invocation of the other had terminated.
- If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of $T$ implies that there are at least $(M-1) /(2 n)$ different $R(\phi[t])$ values in the table.


## The Proof (concluded)

- We already know that there are at most $p(n)$ such values.
- Hence $(M-1) /(2 n) \leq p(n)$.
- Thus $M \leq 2 n p(n)+1$.
- The running time is therefore $O(M p(n))=O\left(n p^{2}(n)\right)$.
- We comment that this theorem holds for any sparse language, not just unary ones. ${ }^{\text {a }}$
${ }^{\text {a }}$ Mahaney (1980).


## coNP-Completeness and Density

Theorem 82 (Fortung (1979)) If a unary language $U \subseteq\{0\}^{*}$ is coNP-complete, then $P=N P$.

- Suppose there is a reduction $R$ from sat complement to $U$.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.


[^0]:    ${ }^{\text {a }}$ Contributed by Mr. Jenq-Chung Li (R92922087) on December 20, 2003. Recall that König's theorem says the size of a maximum matching equals that of a minimum node cover in a bipartite graph.

[^1]:    ${ }^{\text {a }}$ Johnson (1974).

[^2]:    ${ }^{\mathrm{a}}$ Goemans and Williamson (1995).

[^3]:    ${ }^{\text {a }}$ Sahni and Gonzales (1976).

[^4]:    ${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.

[^5]:    ${ }^{\text {a }}$ Garey and Johnson (1978).

[^6]:    a Berman and Hartmanis (1977).

