
Approximability

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 629

And by the way
it is possible that P = NP.

— Stephen Cook (1998)

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 630

Tackling Intractable Problems

• Many important problems are NP-complete or worse.

• Heuristics have been developed to attack them.

• They are approximation algorithms.

• How good are the approximations?

– We are looking for theoretically guaranteed bounds,
not “empirical” bounds.

• Are there NP problems that cannot be approximated
well (assuming NP 6= P)?

• Are there NP problems that cannot be approximated at
all (assuming NP 6= P)?

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 631

Some Definitions

• Given an optimization problem, each problem
instance x has a set of feasible solutions F (x).

• Each feasible solution s ∈ F (x) has a cost c(s) ∈ Z+.

– Here, cost refers to the quality of the feasible
solution, not the time required to obtain it.

– It is our objective function, e.g., total distance,
satisfaction, or cut size.

• The optimum cost is opt(x) = mins∈F (x) c(s) for a
minimization problem.

• It is opt(x) = maxs∈F (x) c(s) for a maximization
problem.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 632

Approximation Algorithms

• Let algorithm M on x returns a feasible solution.

• M is an ε-approximation algorithm, where ε ≥ 0, if
for all x,

|c(M(x))− opt(x)|
max(opt(x), c(M(x)))

≤ ε.

– For a minimization problem,

c(M(x))−mins∈F (x) c(s)
c(M(x))

≤ ε.

– For a maximization problem,

maxs∈F (x) c(s)− c(M(x))
maxs∈F (x) c(s)

≤ ε. (10)

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 633

Lower and Upper Bounds

• For a minimization problem,

min
s∈F (x)

c(s) ≤ c(M(x)) ≤ mins∈F (x) c(s)
1− ε

.

– So approximation ratio mins∈F (x) c(s)

c(M(x)) ≥ 1− ε.

• For a maximization problem,

(1− ε)× max
s∈F (x)

c(s) ≤ c(M(x)) ≤ max
s∈F (x)

c(s). (11)

– So approximation ratio c(M(x))
maxs∈F (x) c(s) ≥ 1− ε.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 634

Range Bounds

• ε takes values between 0 and 1.

• For maximization problems, an ε-approximation
algorithm returns solutions within [(1− ε)× opt,opt].

• For minimization problems, an ε-approximation
algorithm returns solutions within [opt, opt

1−ε].

• For each NP-complete optimization problem, we shall be
interested in determining the smallest ε for which there
is a polynomial-time ε-approximation algorithm.

• Sometimes ε has no minimum value.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 635

Approximation Thresholds

• The approximation threshold is the greatest lower
bound of all ε ≥ 0 such that there is a polynomial-time
ε-approximation algorithm.

• The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any
desired degree) and 1 (no approximation is possible).

• If P = NP, then all optimization problems in NP have
an approximation threshold of 0.

• So we assume P 6= NP for the rest of the discussion.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 636

node cover

• node cover seeks the smallest C ⊆ V in graph
G = (V,E) such that for each edge in E, at least one of
its endpoints is in C.

• A heuristic to obtain a good node cover is to iteratively
move a node with the highest degree to the cover.

• This turns out to produce

opt(x)
c(M(x))

= Θ(log−1 n).

• Hence the approximation ratio is Θ(log−1 n).

• It is not an ε-approximation algorithm for any constant
ε < 1.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 637

A 0.5-Approximation Algorithma

1: C := ∅;
2: while E 6= ∅ do
3: Delete an arbitrary edge {u, v } from E;
4: Add u and v to C; {Add 2 nodes to C each time.}
5: Delete edges incident with u and v from E;
6: end while
7: return C;

aJohnson (1974).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 638

Analysis

• It is easy to see that C is a node cover.

• C contains |C|/2 edges.

• No two edges of C share a node.a

• Any node cover must contain at least one node from
each of these edges.

aIn fact, C as a set of edges is a maximal matching.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 639

Analysis (concluded)

• This means that opt(G) ≥ |C|/2.

• So the approximation ratio

opt(G)
|C| ≥ 1/2.

• The approximation threshold is ≤ 0.5.a

a0.5 is also the lower bound for any “greedy” algorithms (see Davis

and Impagliazzo (2004)).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 640

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 641

The 0.5 Bound Is Tight for the Algorithma

Optimal cover

aContributed by Mr. Jenq-Chung Li (R92922087) on December 20,

2003. Recall that König’s theorem says the size of a maximum matching

equals that of a minimum node cover in a bipartite graph.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642

Maximum Satisfiability

• Given a set of clauses, maxsat seeks the truth
assignment that satisfies the most.

• max2sat is already NP-complete (p. 294), so maxsat is
NP-complete.

• Consider the more general k-maxgsat for constant k.

– Given a set of boolean expressions
Φ = {φ1, φ2, . . . , φm} in n variables.

– Each φi is a general expression involving k variables.

– k-maxgsat seeks the truth assignment that satisfies
the most expressions.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 643

A Probabilistic Interpretation of an Algorithm

• Each φi involves exactly k variables and is satisfied by si

of the 2k truth assignments.

• A random truth assignment ∈ {0, 1}n satisfies φi with
probability p(φi) = si/2k.

– p(φi) is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an expected
number

p(Φ) =
m∑

i=1

p(φi)

of expressions φi.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 644

The Search Procedure

• Clearly

p(Φ) =
1
2
{ p(Φ[x1 = true]) + p(Φ[x1 = false]) }.

• Select the t1 ∈ {true, false} such that p(Φ[x1 = t1]) is
the larger one.

• Note that p(Φ[x1 = t1]) ≥ p(Φ).

• Repeat with expression Φ[x1 = t1] until all variables xi

have been given truth values ti and all φi either true or
false.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 645

The Search Procedure (concluded)

• By our hill-climbing procedure,

p(Φ)

≤ p(Φ[x1 = t1])

≤ p(Φ[x1 = t1, x2 = t2])

≤ · · ·
≤ p(Φ[x1 = t1, x2 = t2, . . . , xn = tn]).

• So at least p(Φ) expressions are satisfied by truth
assignment (t1, t2, . . . , tn).

• The algorithm is deterministic.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 646

Approximation Analysis

• The optimum is at most the number of satisfiable
φi—i.e., those with p(φi) > 0.

• Hence the ratio of algorithm’s output vs. the optimum is

≥ p(Φ)∑
p(φi)>0 1

=
∑

i p(φi)∑
p(φi)>0 1

≥ min
p(φi)>0

p(φi).

• The heuristic is a polynomial-time ε-approximation
algorithm with ε = 1−minp(φi)>0 p(φi).

• Because p(φi) ≥ 2−k, the heuristic is a polynomial-time
ε-approximation algorithm with ε = 1− 2−k.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 647

Back to maxsat

• In maxsat, the φi’s are clauses.

• Hence p(φi) ≥ 1/2, which happens when φi contains a
single literal.

• And the heuristic becomes a polynomial-time
ε-approximation algorithm with ε = 1/2.a

• If the clauses have k distinct literals, p(φi) = 1− 2−k.

• And the heuristic becomes a polynomial-time
ε-approximation algorithm with ε = 2−k.

– This is the best possible for k ≥ 3 unless P = NP.
aJohnson (1974).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 648

max cut Revisited

• The NP-complete max cut seeks to partition the nodes
of graph G = (V, E) into (S, V − S) so that there are as
many edges as possible between S and V − S (p. 322).

• Local search starts from a feasible solution and
performs “local” improvements until none are possible.

• Next we present a local search algorithm for max cut.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 649

A 0.5-Approximation Algorithm for max cut

1: S := ∅;
2: while ∃v ∈ V whose switching sides results in a larger

cut do
3: Switch the side of v;
4: end while
5: return S;

• A 0.12-approximation algorithm exists.a

• 0.059-approximation algorithms do not exist unless
NP = ZPP.

aGoemans and Williamson (1995).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 650

Analysis

V
3
 V
4

V
2
V
1

Optimal cut

Our cut

e
12

e
13

e
24

e
34

e
14
 e
23

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 651

Analysis (continued)

• Partition V = V1 ∪ V2 ∪ V3 ∪ V4, where

– Our algorithm returns (V1 ∪ V2, V3 ∪ V4).

– The optimum cut is (V1 ∪ V3, V2 ∪ V4).

• Let eij be the number of edges between Vi and Vj .

• For each node v ∈ V1, its edges to V1 ∪ V2 are
outnumbered by those to V3 ∪ V4.

– Otherwise, v would have been moved to V3 ∪ V4 to
improve the cut.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652

Analysis (continued)

• Considering all nodes in V1 together, we have
2e11 + e12 ≤ e13 + e14

– It is 2e11 is because each edge in V1 is counted twice.

• The above inequality implies

e12 ≤ e13 + e14.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 653

Analysis (concluded)

• Similarly,

e12 ≤ e23 + e24

e34 ≤ e23 + e13

e34 ≤ e14 + e24

• Add all four inequalities, divide both sides by 2, and add
the inequality e14 + e23 ≤ e14 + e23 + e13 + e24 to obtain

e12 + e34 + e14 + e23 ≤ 2(e13 + e14 + e23 + e24).

• The above says our solution is at least half the optimum.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 654

Approximability, Unapproximability, and Between

• knapsack, node cover, maxsat, and max cut have
approximation thresholds less than 1.

– knapsack has a threshold of 0 (p. 658).

– But node cover and maxsat have a threshold
larger than 0.

• The situation is maximally pessimistic for tsp, which
cannot be approximated (p. 656).

– The approximation threshold of tsp is 1.

∗ The threshold is 1/3 if the tsp satisfies the
triangular inequality.

– The same holds for independent set.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655

Unapproximability of tspa

Theorem 77 The approximation threshold of tsp is 1
unless P = NP.

• Suppose there is a polynomial-time ε-approximation
algorithm for tsp for some ε < 1.

• We shall construct a polynomial-time algorithm for the
NP-complete hamiltonian cycle.

• Given any graph G = (V, E), construct a tsp with |V |
cities with distances

dij =





1, if { i, j } ∈ E
|V |
1−ε , otherwise

aSahni and Gonzales (1976).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 656

The Proof (concluded)

• Run the alleged approximation algorithm on this tsp.

• Suppose a tour of cost |V | is returned.

– This tour must be a Hamiltonian cycle.

• Suppose a tour with at least one edge of length |V |
1−ε is

returned.

– The total length of this tour is > |V |
1−ε .

– Because the algorithm is ε-approximate, the optimum
is at least 1− ε times the returned tour’s length.

– The optimum tour has a cost exceeding |V |.
– Hence G has no Hamiltonian cycles.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 657

knapsack Has an Approximation Threshold of Zeroa

Theorem 78 For any ε, there is a polynomial-time
ε-approximation algorithm for knapsack.

• We have n weights w1, w2, . . . , wn ∈ Z+, a weight limit
W , and n values v1, v2, . . . , vn ∈ Z+.b

• We must find an S ⊆ {1, 2, . . . , n} such that∑
i∈S wi ≤ W and

∑
i∈S vi is the largest possible.

aIbarra and Kim (1975).
bIf the values are fractional, the result is slightly messier, but the

main conclusion remains correct. Contributed by Mr. Jr-Ben Tian

(R92922045) on December 29, 2004.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658

The Proof (continued)

• Let
V = max{v1, v2, . . . , vn}.

• Clearly,
∑

i∈S vi ≤ nV .

• Let 0 ≤ i ≤ n and 0 ≤ v ≤ nV .

• W (i, v) is the minimum weight attainable by selecting
some of the first i items with a total value of v.

• Set W (0, v) = ∞ for v ∈ { 1, 2, . . . , nV } and W (i, 0) = 0
for i = 0, 1, . . . , n.a

aContributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu

(D98922013) on December 28, 2009.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659

The Proof (continued)

• Then, for 0 ≤ i < n,

W (i + 1, v) = min{W (i, v),W (i, v − vi+1) + wi+1}.

• Finally, pick the largest v such that W (n, v) ≤ W .

• The running time is O(n2V), not polynomial time.

• Key idea: Limit the number of precision bits.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 660

The Proof (continued)

• Define
v′i = 2b

⌊ vi

2b

⌋
.

– This is equivalent to zeroing each vi’s last b bits.

• From the original instance

x = (w1, . . . , wn,W, v1, . . . , vn),

define the approximate instance

x′ = (w1, . . . , wn,W, v′1, . . . , v
′
n).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 661

The Proof (continued)

• Solving x′ takes time O(n2V/2b).

– The algorithm only performs subtractions on the
vi-related values.

– So the b last bits can be removed from the
calculations.

– That is, use v′i =
⌊

vi

2b

⌋
and V =

⌊
max(v1,v2,...,vn)

2b

⌋
in

the calculations.

– Then multiply the returned value by 2b.

• The solution S′ is close to the optimum solution S:
∑

i∈S′
vi ≥

∑

i∈S′
v′i ≥

∑

i∈S

v′i ≥
∑

i∈S

(vi − 2b) ≥
∑

i∈S

vi − n2b.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 662

The Proof (continued)

• Hence ∑

i∈S′
vi ≥

∑

i∈S

vi − n2b.

• Without loss of generality, assume wi ≤ W for all i.

– Otherwise, item i is redundant.

• V is a lower bound on opt.

– Picking an item with value V is a legitimate choice.

• The relative error from the optimum is ≤ n2b/V :
∑

i∈S vi −
∑

i∈S′ vi∑
i∈S vi

≤
∑

i∈S vi −
∑

i∈S′ vi

V
≤ n2b

V
.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 663

The Proof (concluded)

• Suppose we pick b = blog2
εV
n c.

• The algorithm becomes ε-approximate (see Eq. (10) on
p. 633).

• The running time is then O(n2V/2b) = O(n3/ε), a
polynomial in n and 1/ε.a

aIt hence depends on the value of 1/ε. Thanks to a lively class dis-

cussion on December 20, 2006. If we fix ε and let the problem size

increase, then the complexity is cubic. Contributed by Mr. Ren-Shan

Luoh (D97922014) on December 23, 2008.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 664

Pseudo-Polynomial-Time Algorithms

• Consider problems with inputs that consist of a
collection of integer parameters (tsp, knapsack, etc.).

• An algorithm for such a problem whose running time is
a polynomial of the input length and the value (not
length) of the largest integer parameter is a
pseudo-polynomial-time algorithm.a

• On p. 660, we presented a pseudo-polynomial-time
algorithm for knapsack that runs in time O(n2V).

• How about tsp (d), another NP-complete problem?

aGarey and Johnson (1978).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 665

No Pseudo-Polynomial-Time Algorithms for tsp (d)

• By definition, a pseudo-polynomial-time algorithm
becomes polynomial-time if each integer parameter is
limited to having a value polynomial in the input length.

• Corollary 43 (p. 339) showed that hamiltonian path is
reducible to tsp (d) with weights 1 and 2.

• As hamiltonian path is NP-complete, tsp (d) cannot
have pseudo-polynomial-time algorithms unless P = NP.

• tsp (d) is said to be strongly NP-hard.

• Many weighted versions of NP-complete problems are
strongly NP-hard.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 666

Polynomial-Time Approximation Scheme

• Algorithm M is a polynomial-time approximation
scheme (PTAS) for a problem if:

– For each ε > 0 and instance x of the problem, M

runs in time polynomial (depending on ε) in |x |.
∗ Think of ε as a constant.

– M is an ε-approximation algorithm for every ε > 0.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 667

Fully Polynomial-Time Approximation Scheme

• A polynomial-time approximation scheme is fully
polynomial (FPTAS) if the running time depends
polynomially on |x | and 1/ε.

– Maybe the best result for a “hard” problem.

– For instance, knapsack is fully polynomial with a
running time of O(n3/ε) (p. 658).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 668

Square of G

• Let G = (V, E) be an undirected graph.

• G2 has nodes {(v1, v2) : v1, v2 ∈ V } and edges

{{ (u, u′), (v, v′) } : (u = v ∧ {u′, v′ } ∈ E) ∨ {u, v } ∈ E}.

1

2

3

(1,1)

G

(1,2)
 (1,3)

(2,1)
 (2,2)
 (2,3)

(3,1)
 (3,2)
 (3,3)

G
2

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 669

Independent Sets of G and G2

Lemma 79 G(V, E) has an independent set of size k if and
only if G2 has an independent set of size k2.

• Suppose G has an independent set I ⊆ V of size k.

• {(u, v) : u, v ∈ I} is an independent set of size k2 of G2.

1

2

3

(1,1)

G

(1,2)
 (1,3)

(2,1)
 (2,2)
 (2,3)

(3,1)
 (3,2)
 (3,3)

G
2

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 670

The Proof (continued)

• Suppose G2 has an independent set I2 of size k2.

• U ≡ {u : ∃v ∈ V (u, v) ∈ I2} is an independent set of G.

1

2

3

(1,1)

G

(1,2)
 (1,3)

(2,1)
 (2,2)
 (2,3)

(3,1)
 (3,2)
 (3,3)

G
2

• |U | is the number of “rows” that the nodes in I2 occupy.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 671

The Proof (concluded)a

• If |U | ≥ k, then we are done.

• Now assume |U | < k.

• As the k2 nodes in I2 cover fewer than k “rows,” there
must be a “row” in possession of > k nodes of I2.

• Those > k nodes will be independent in G as each “row”
is a copy of G.

aThanks to a lively class discussion on December 29, 2004.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 672

Approximability of independent set

• The approximation threshold of the maximum
independent set is either zero or one (it is one!).

Theorem 80 If there is a polynomial-time ε-approximation
algorithm for independent set for any 0 < ε < 1, then
there is a polynomial-time approximation scheme.

• Let G be a graph with a maximum independent set of
size k.

• Suppose there is an O(ni)-time ε-approximation
algorithm for independent set.

• We seek a polynomial-time ε′-approximation algorithm
with ε′ < ε.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 673

The Proof (continued)

• By Lemma 79 (p. 670), the maximum independent set of
G2 has size k2.

• Apply the algorithm to G2.

• The running time is O(n2i).

• The resulting independent set has size ≥ (1− ε) k2.

• By the construction in Lemma 79 (p. 670), we can
obtain an independent set of size ≥

√
(1− ε) k2 for G.

• Hence there is a (1−√1− ε)-approximation algorithm
for independent set by Eq. (11) on p. 634.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 674

The Proof (concluded)

• In general, we can apply the algorithm to G2`

to obtain
an (1− (1− ε)2

−`

)-approximation algorithm for
independent set.

• The running time is n2`i.a

• Now pick ` = dlog log(1−ε)
log(1−ε′)e.

• The running time becomes n
i

log(1−ε)
log(1−ε′) .

• It is an ε′-approximation algorithm for independent

set.
aIt is not fully polynomial.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 675

Comments

• independent set and node cover are reducible to
each other (Corollary 40, p. 316).

• node cover has an approximation threshold at most
0.5 (p. 639).

• But independent set is unapproximable (see the
textbook).

• independent set limited to graphs with degree ≤ k is
called k-degree independent set.

• k-degree independent set is approximable (see the
textbook).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 676

On P vs. NP

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 677

Densitya

The density of language L ⊆ Σ∗ is defined as

densL(n) = |{x ∈ L : |x | ≤ n}|.

• If L = {0, 1}∗, then densL(n) = 2n+1 − 1.

• So the density function grows at most exponentially.

• For a unary language L ⊆ {0}∗,

densL(n) ≤ n + 1.

– Because L ⊆ {ε, 0, 00, . . . ,

n︷ ︸︸ ︷
00 · · · 0, . . .}.

aBerman and Hartmanis (1977).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 678

Sparsity

• Sparse languages are languages with polynomially
bounded density functions.

• Dense languages are languages with superpolynomial
density functions.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 679

Self-Reducibility for sat

• An algorithm exhibits self-reducibility if it finds a
certificate by exploiting algorithms for the decision
version of the same problem.

• Let φ be a boolean expression in n variables
x1, x2, . . . , xn.

• t ∈ {0, 1}j is a partial truth assignment for
x1, x2, . . . , xj .

• φ[t] denotes the expression after substituting the truth
values of t for x1, x2, . . . , x| t | in φ.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 680

An Algorithm for sat with Self-Reduction

We call the algorithm below with empty t.

1: if | t | = n then
2: return φ[t];
3: else
4: return φ[t0] ∨ φ[t1];
5: end if

The above algorithm runs in exponential time, by visiting all
the partial assignments (or nodes on a depth-n binary tree).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 681

NP-Completeness and Densitya

Theorem 81 If a unary language U ⊆ {0}∗ is
NP-complete, then P = NP.

• Suppose there is a reduction R from sat to U .

• We use R to find a truth assignment that satisfies
boolean expression φ with n variables if it is satisfiable.

• Specifically, we use R to prune the exponential-time
exhaustive search on p. 681.

• The trick is to keep the already discovered results φ[t]
in a table H.

aBerman (1978).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 682

1: if | t | = n then

2: return φ[t];

3: else

4: if (R(φ[t]), v) is in table H then

5: return v;

6: else

7: if φ[t0] = “satisfiable” or φ[t1] = “satisfiable” then

8: Insert (R(φ[t]), “satisfiable”) into H;

9: return “satisfiable”;

10: else

11: Insert (R(φ[t]), “unsatisfiable”) into H;

12: return “unsatisfiable”;

13: end if

14: end if

15: end if

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 683

The Proof (continued)

• Since R is a reduction, R(φ[t]) = R(φ[t′]) implies that
φ[t] and φ[t′] must be both satisfiable or unsatisfiable.

• R(φ[t]) has polynomial length ≤ p(n) because R runs in
log space.

• As R maps to unary numbers, there are only
polynomially many p(n) values of R(φ[t]).

• How many nodes of the complete binary tree (of
invocations/truth assignments) need to be visited?

• If that number is a polynomial, the overall algorithm
runs in polynomial time and we are done.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 684

The Proof (continued)

• A search of the table takes time O(p(n)) in the random
access memory model.

• The running time is O(Mp(n)), where M is the total
number of invocations of the algorithm.

• The invocations of the algorithm form a binary tree of
depth at most n.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 685

The Proof (continued)

• There is a set T = {t1, t2, . . .} of invocations (partial
truth assignments, i.e.) such that:

1. |T | ≥ (M − 1)/(2n).

2. All invocations in T are recursive (nonleaves).

3. None of the elements of T is a prefix of another.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 686

�VW�VWHS��'HOHWH
OHDYHV���0�−�����
QRQOHDYHV�UHPDLQLQJ

�QG�VWHS��6HOHFW�DQ\
ERWWRP�XQGHOHWHG
LQYRFDWLRQ�W�DQG�DGG
LW�WR�7

�UG�VWHS��'HOHWH�DOO�W
V
DW�PRVW�Q�DQFHVWRUV
�SUHIL[HV��IURP
IXUWKHU�FRQVLGHUDWLRQ

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 687

An Example

r

a
 c

d
 e
 f

g
 h
 i
 j

l
 k

1

2

3

4

5

T = {h, j }.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 688

The Proof (continued)

• All invocations t ∈ T have different R(φ[t]) values.

– None of h, j ∈ T is a prefix of the other.

– The invocation of one started after the invocation of
the other had terminated.

– If they had the same value, the one that was invoked
second would have looked it up, and therefore would
not be recursive, a contradiction.

• The existence of T implies that there are at least
(M − 1)/(2n) different R(φ[t]) values in the table.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 689

The Proof (concluded)

• We already know that there are at most p(n) such
values.

• Hence (M − 1)/(2n) ≤ p(n).

• Thus M ≤ 2np(n) + 1.

• The running time is therefore O(Mp(n)) = O(np2(n)).

• We comment that this theorem holds for any sparse
language, not just unary ones.a

aMahaney (1980).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 690

coNP-Completeness and Density

Theorem 82 (Fortung (1979)) If a unary language
U ⊆ {0}∗ is coNP-complete, then P = NP.

• Suppose there is a reduction R from sat complement

to U .

• The rest of the proof is basically identical except that,
now, we want to make sure a formula is unsatisfiable.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 691

