Approximability

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 629

And by the way

it is possible that P = NP.
— Stephen Cook (1998)

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 630

Tackling Intractable Problems

Many important problems are NP-complete or worse.
Heuristics have been developed to attack them.
They are approximation algorithms.

How good are the approximations?
— We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

Are there NP problems that cannot be approximated
well (assuming NP # P)?

Are there NP problems that cannot be approximated at
all (assuming NP # P)?

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 631

Some Definitions

Given an optimization problem, each problem
instance = has a set of feasible solutions F'(x).
Each feasible solution s € F'(x) has a cost ¢(s) € Z™.

— Here, cost refers to the quality of the feasible
solution, not the time required to obtain it.

— It is our objective function, e.g., total distance,

satisfaction, or cut size.

The optimum cost is OPT(x) = minge p(,) c(s) for a

minimization problem.

It is OPT(x) = maXse p(s) ¢(s) for a maximization

problem.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 632

Approximation Algorithms
e Let algorithm M on x returns a feasible solution.

e M is an e-approximation algorithm, where ¢ > 0, if

for all z,

c(M(z)) —opr(z)] _
max(OPT(x),c(M(x))) —
— For a minimization problem,

o(M(x)) — minye pa) ()
(M (x)) =€

— For a maximization problem,

MaXsep(z) €(5) — c(M(z))

MaXsc () C(S)

<e€

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 633

Lower and Upper Bounds

e For a minimization problem,

minsEF(m) C(S)

min o) < c(M(@) < =

Ming ¢ 7 (x) c(s) >1—¢

— So approximation ratio c(M(x))

e For a maximization problem,

(1 —¢€) x Srenﬁgé) c(s) <c(M(x)) < SIEHP@();) c(s). (11)

M) > 1

maXgc F(x) c(s) =

— So approximation ratio

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 634

Range Bounds
e takes values between 0 and 1.

For maximization problems, an e-approximation

algorithm returns solutions within | (1 — €¢) X OPT, OPT|.

For minimization problems, an e-approximation
OPT

algorithm returns solutions within [OPT, T |.

For each NP-complete optimization problem, we shall be
interested in determining the smallest ¢ for which there

is a polynomial-time e-approximation algorithm.

Sometimes € has no minimum value.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 635

Approximation Thresholds

The approximation threshold is the greatest lower
bound of all € > 0 such that there is a polynomial-time

c-approximation algorithm.

The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any
desired degree) and 1 (no approximation is possible).

If P = NP, then all optimization problems in NP have

an approximation threshold of 0.

So we assume P # NP for the rest of the discussion.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 636

NODE COVER

NODE COVER seeks the smallest C' C V' in graph
G = (V, E) such that for each edge in E, at least one of

its endpoints is in C.

A heuristic to obtain a good node cover is to iteratively
move a node with the highest degree to the cover.

This turns out to produce

OPT(x)
c(M(z))

= O(log ' n).

1

Hence the approximation ratio is ©(log™ " n).

It is not an e-approximation algorithm for any constant
e < 1.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 637

A 0.5-Approximation Algorithm?

. C =)

. while F # () do
Delete an arbitrary edge { u,v } from F;
Add u and v to C; {Add 2 nodes to C' each time.}
Delete edges incident with v and v from FE;

. end while

. return C;

2Johnson (1974).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 638

Analysis

It is easy to see that C' is a node cover.
C' contains |C'|/2 edges.
No two edges of C share a node.?

Any node cover must contain at least one node from

each of these edges.

2In fact, C' as a set of edges is a mazximal matching.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 639

Analysis (concluded)

e This means that opT(G) > |C|/2.

e So the approximation ratio

oPT(G)

— = >1/2.
e =Y

e The approximation threshold is < 0.5.2

20.5 is also the lower bound for any “greedy” algorithms (see Davis
and Impagliazzo (2004)).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 640

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 641

The 0.5 Bound Is Tight for the Algorithm?

2Contributed by Mr. Jeng-Chung Li (R92922087) on December 20,
2003. Recall that Konig’s theorem says the size of a maximum matching
equals that of a minimum node cover in a bipartite graph.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642

Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth

assignment that satisfies the most.

e MAX2SAT is already NP-complete (p. 294), so MAXSAT is
NP-complete.
e Consider the more general k-MAXGSAT for constant k.

— Given a set of boolean expressions
O = {¢1,P2,...,0m} in n variables.

— Each ¢; is a general expression involving k variables.

— k-MAXGSAT seeks the truth assignment that satisfies

the most expressions.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 643

A Probabilistic Interpretation of an Algorithm

e Fach ¢; involves exactly k variables and is satisfied by s;
of the 2% truth assignments.

e A random truth assignment € {0, 1}" satisfies ¢; with
probability p(¢;) = s;/2".

— p(¢;) is easy to calculate as k is a constant.

e Hence a random truth assignment satisfies an expected

number
™m

p(®) = p(e)

1=1

of expressions ¢;.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 644

The Search Procedure

Clearly

% {p(®|z1 = true]) + p(P|x; = false]) }.

Select the t; € {true, false} such that p(®|xy; =11]) is

the larger one.
Note that p(®[x1 =t1]) > p(P).

Repeat with expression ®|x; = t1] until all variables z;
have been given truth values t; and all ¢; either true or

false.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 645

The Search Procedure (concluded)

e By our hill-climbing procedure,

p(P)
p(®lz1 =11])
p(P|lz1 =t1, 22 =12])

p(CID[azl = tl,ZCQ = tg,...

e So at least p(®) expressions are satisfied by truth

assignment (t1,to,...,t,).

e The algorithm is deterministic.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 646

Approximation Analysis

The optimum is at most the number of satisfiable
¢;—i.e., those with p(¢;) > 0.

Hence the ratio of algorithm’s output vs. the optimum is

p(®) _ >.ip(#)

>
ZP(¢i)>O 1

The heuristic is a polynomial-time e-approximation

algorithm with € = 1 — miny,4,)>0 P(®s).

Because p(¢;) > 27, the heuristic is a polynomial-time

e-approximation algorithm with e =1 — 27,

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 647

Back to MAXSAT
In MAXSAT, the ¢,’s are clauses.

Hence p(¢;) > 1/2, which happens when ¢; contains a

single literal.

And the heuristic becomes a polynomial-time

e-approximation algorithm with e = 1/2.2

If the clauses have k distinct literals, p(¢;) = 1 — 27,

And the heuristic becomes a polynomial-time
e-approximation algorithm with e = 27,

— This is the best possible for £ > 3 unless P = NP.

2Johnson (1974).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 648

MAX CUT Revisited

e The NP-complete MAX CUT seeks to partition the nodes
of graph G = (V, E) into (S, V — S) so that there are as
many edges as possible between S and V — S (p. 322).

e Local search starts from a feasible solution and

performs “local” improvements until none are possible.

e Next we present a local search algorithm for MAX CUT.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 649

A 0.5-Approximation Algorithm for MAX CUT
. S =0
: while dv € V' whose switching sides results in a larger
cut do
Switch the side of v;
. end while

. return S;

e A 0.12-approximation algorithm exists.?

e 0.059-approximation algorithms do not exist unless

NP = ZPP.

2Goemans and Williamson (1995).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 650

Analysis

~— Optimal cut

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 651

Analysis (continued)

e Partition V =V; U V5 U V3 U V,, where
— Our algorithm returns (V3 U Va, V3 U Vy).
— The optimum cut is (V3 U V3, Vo U Vy).

e Let e;; be the number of edges between V; and V.

e For each node v € V7, its edges to V7 U V5 are
outnumbered by those to V3 U Vj.

— Otherwise, v would have been moved to V3 U Vj to

improve the cut.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652

Analysis (continued)

e Considering all nodes in V; together, we have

2e11 +e12 < ej3+ey

— It is 2eq7 is because each edge in V; is counted twice.

e The above inequality implies

e12 < e13 + e14.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 653

Analysis (concluded)

e Similarly,

€23 + €24
< €23+ €13

< e14+ ey

e Add all four inequalities, divide both sides by 2, and add
the inequality e14 + ea3 < €14 + €23 + e13 + ea4 to obtain

e12 + €34 + €14 + €23 < 2(e13 + €14 + €23 + €24).

e The above says our solution is at least half the optimum.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 654

Approximability, Unapproximability, and Between

e KNAPSACK, NODE COVER, MAXSAT, and MAX CUT have
approximation thresholds less than 1.

— KNAPSACK has a threshold of 0 (p. 658).
— But NODE COVER and MAXSAT have a threshold

larger than 0.

e The situation is maximally pessimistic for TSP, which
cannot be approximated (p. 656).

— The approximation threshold of TSP is 1.

+ The threshold is 1/3 if the TSP satisfies the
triangular inequality.

— The same holds for INDEPENDENT SET.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655

Unapproximability of Tsp?

Theorem 77 The approximation threshold of TSP s 1
unless P = NP.

e Suppose there is a polynomial-time e-approximation
algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm for the
NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, E), construct a TSP with | V|
cities with distances

if{i,j} € £

otherwise

2Sahni and Gonzales (1976).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 656

The Proof (concluded)

e Run the alleged approximation algorithm on this TSP.

e Suppose a tour of cost |V] is returned.

— This tour must be a Hamiltonian cycle.

Vi

e Suppose a tour with at least one edge of length {—_ is

returned.

V]
1—e€-

— The total length of this tour is >

— Because the algorithm is e-approximate, the optimum
is at least 1 — € times the returned tour’s length.

— The optimum tour has a cost exceeding | V'|.

— Hence G has no Hamiltonian cycles.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 657

KNAPSACK Has an Approximation Threshold of Zero?

Theorem 78 For any €, there is a polynomial-time

e-approximation algorithm for KNAPSACK.

e We have n weights wy, ws, ..., w, € Z*, a weight limit
W, and n values vy, vs,...,v, € Z1.P

e We must find an S C {1,2,...,n} such that
ZiES w; < W and Zie 5 U; 1s the largest possible.

2Ibarra and Kim (1975).
PIf the values are fractional, the result is slightly messier, but the

main conclusion remains correct. Contributed by Mr. Jr-Ben Tian
(R92922045) on December 29, 2004.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658

The Proof (continued)

V = max{vy,va,..., 0}
Clearly,) .cqvi <nV.
Let 0<71<nand 0 <ov<nV.

W (i,v) is the minimum weight attainable by selecting

some of the first 7 items with a total value of v.

Set W (0,v) =00 forve {1,2,...,nV } and W(i,0) =0

fori=0,1,...,n.2

2Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu
(D98922013) on December 28, 2009.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659

The Proof (continued)

Then, for 0 <17 < n,
Wi+ 1,v) =min{W(i,v), W(i,v — v11) + wis1}

Finally, pick the largest v such that W (n,v) < W.

The running time is O(n?V’), not polynomial time.

Key idea: Limit the number of precision bits.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 660

The Proof (continued)

e Define

1 ob | Vi
— This is equivalent to zeroing each v;’s last b bits.

e From the original instance
r=(wy,..., Wy, W,v1,...

define the approximate instance

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 661

The Proof (continued)

e Solving ' takes time O(n2V/2%).
— The algorithm only performs subtractions on the

v;-related values.

So the b last bits can be remowved from the

calculations.

2 20

That is, use ’Ug — LU—gJ and V = \‘max(m,vm...,vn)J in

the calculations.

— Then multiply the returned value by 2°.

e The solution S’ is close to the optimum solution S:

Zviz ZUQZZU;;ZZ(U@—QI’) ZZU@—TLQb-

1eS’ 1eS’ €S eS8 1€S

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 662

The Proof (continued)

Z’Ui Z Zvi—an.

i€ S’ i€S
Without loss of generality, assume w; < W for all 1.

— Otherwise, item ¢ is redundant.

V is a lower bound on OPT.

— Picking an item with value V' is a legitimate choice.

The relative error from the optimum is < n2°/V:

. ZieS’ Uy <
Zies U;

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 663

The Proof (concluded)

e Suppose we pick b = |log, %J

e The algorithm becomes e-approximate (see Eq. (10) on
p. 633).

e The running time is then O(n?V/2%) = O(n3/e), a

polynomial in n and 1/e.?

2]t hence depends on the value of 1/e. Thanks to a lively class dis-
cussion on December 20, 2006. If we fix ¢ and let the problem size
increase, then the complexity is cubic. Contributed by Mr. Ren-Shan
Luoh (D97922014) on December 23, 2008.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 664

Pseudo-Polynomial-Time Algorithms

e Consider problems with inputs that consist of a

collection of integer parameters (TSP, KNAPSACK, etc.).

e An algorithm for such a problem whose running time is
a polynomial of the input length and the value (not
length) of the largest integer parameter is a
pseudo-polynomial-time algorithm.?

e On p. 660, we presented a pseudo-polynomial-time
algorithm for KNAPSACK that runs in time O(n?V).

e How about TSP (D), another NP-complete problem?

2Garey and Johnson (1978).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 665

No Pseudo-Polynomial-Time Algorithms for TSP (D)

e By definition, a pseudo-polynomial-time algorithm
becomes polynomial-time if each integer parameter is
limited to having a value polynomial in the input length.

Corollary 43 (p. 339) showed that HAMILTONIAN PATH is
reducible to TSP (D) with weights 1 and 2.

As HAMILTONIAN PATH is NP-complete, TSP (D) cannot
have pseudo-polynomial-time algorithms unless P = NP.

TSP (D) is said to be strongly NP-hard.

Many weighted versions of NP-complete problems are
strongly NP-hard.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 666

Polynomial-Time Approximation Scheme

e Algorithm M is a polynomial-time approximation
scheme (PTAS) for a problem if:

— For each ¢ > 0 and instance x of the problem, M
runs in time polynomial (depending on ¢€) in |z |.
« Think of € as a constant.

— M is an e-approximation algorithm for every ¢ > 0.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 667

Fully Polynomial-Time Approximation Scheme

e A polynomial-time approximation scheme is fully
polynomial (FPTAS) if the running time depends

polynomially on |z | and 1/e.
— Maybe the best result for a “hard” problem.

— For instance, KNAPSACK is fully polynomial with a
running time of O(n?/e) (p. 658).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 668

Square of G
e Let G = (V,FE) be an undirected graph.

e G? has nodes {(v1,v3) : v1,v2 € V} and edges

H(u,u), (v,0)}: (u=vA{u, v} e E)V{uv} e E}

(1,2) (1,2 (1,3

1 C“}é%g@
X

()3 J ())
3,1 (3,2 (3,3

GZ

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 669

Independent Sets of G and G?

Lemma 79 G(V, E) has an independent set of size k if and
only if G* has an independent set of size k.

e Suppose G has an independent set I C V of size k.

e {(u,v):u,v €I} is an independent set of size k* of G*.

(1,2) (1,2 (1,3)
K\%{

(32
GZ

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 670

The Proof (continued)

e Suppose G2 has an independent set I? of size k2.

o U={u:3veV (uwv) € I?}is an independent set of G.

\

e | U | is the number of “rows” that the nodes in I? occupy.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 671

The Proof (concluded)?®
If |U| >k, then we are done.
Now assume |U | < k.

As the k? nodes in I? cover fewer than k “rows,” there

must be a “row” in possession of > k nodes of I2.

Those > k£ nodes will be independent in G as each “row”
is a copy of G.

@Thanks to a lively class discussion on December 29, 2004.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 672

Approximability of INDEPENDENT SET

e The approximation threshold of the maximum

independent set is either zero or one (it is one!).

Theorem 80 If there is a polynomial-time e-approrimation
algorithm for INDEPENDENT SET for any 0 < € < 1, then

there is a polynomial-time approrimation scheme.

e Let GG be a graph with a maximum independent set of

size k.

e Suppose there is an O(n')-time e-approximation
algorithm for INDEPENDENT SET.

e We seek a polynomial-time €’-approximation algorithm
with € < e.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 673

The Proof (continued)

By Lemma 79 (p. 670), the maximum independent set of
G” has size k.

Apply the algorithm to G?.
The running time is O(n?").
The resulting independent set has size > (1 — €) k2.

By the construction in Lemma 79 (p. 670), we can
obtain an independent set of size > /(1 —¢) k2 for G.

Hence there is a (1 — /1 — €)-approximation algorithm
for INDEPENDENT SET by Eq. (11) on p. 634.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 674

The Proof (concluded)

In general, we can apply the algorithm to G2' to obtain

an (1 — (1 — e)Q_E)—approximation algorithm for

INDEPENDENT SET.

The running time is n? *.2

log(1—e) -I ‘

Now ple é = ﬂog m

. log(1l—e¢)
. . V———————<
The running time becomes n les(d—<")

It is an €’-approximation algorithm for INDEPENDENT
SET.

21t is not fully polynomial.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 675

Comments

INDEPENDENT SET and NODE COVER are reducible to
each other (Corollary 40, p. 316).

NODE COVER has an approximation threshold at most
0.5 (p. 639).

But INDEPENDENT SET is unapproximable (see the
textbook).

INDEPENDENT SET limited to graphs with degree < k is
called k-DEGREE INDEPENDENT SET.

k-DEGREE INDEPENDENT SET is approximable (see the
textbook).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 676

On P vs. NP

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 677

Density?®

The density of language L C X* is defined as
densp(n) =|{x € L:|x| < n}|.
o If L ={0,1}*, then densy(n) =271 — 1.
e So the density function grows at most exponentially.
e For a unary language L C {0},

densy(n) < n+ 1.

—
— Because L C {¢,0,00,...,00---0,...}.

2Berman and Hartmanis (1977).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 678

Sparsity

e Sparse languages are languages with polynomially

bounded density functions.

e Dense languages are languages with superpolynomial

density functions.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 679

Self-Reducibility for SAT

An algorithm exhibits self-reducibility if it finds a
certificate by exploiting algorithms for the decision

version of the same problem.

Let ¢ be a boolean expression in n variables

L1y, Ly ey L.

t € {0,1}/ is a partial truth assignment for

L1, X2y...,Lj.

¢[t] denotes the expression after substituting the truth

values of ¢ for x1,x2,...,2¢| In .

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 680

An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty ¢.
. if |[t| = n then
return ¢[t|;

return ¢[t0]V ¢[tl];

1
2
3: else
4
5. end if

The above algorithm runs in exponential time, by visiting all

the partial assignments (or nodes on a depth-n binary tree).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 681

NP-Completeness and Density®

Theorem 81 If a unary language U C {0}* is
NP-complete, then P = NP.

e Suppose there is a reduction R from SAT to U.

We use R to find a truth assignment that satisfies
boolean expression ¢ with n variables if it is satisfiable.

Specifically, we use R to prune the exponential-time

exhaustive search on p. 681.

The trick is to keep the already discovered results ¢[1]
in a table H.

2Berman (1978).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 682

if |t| = n then
return o[t |;
else
if (R(¢[t]),v) is in table H then
return v;
else
if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then
Insert (R(¢[t]), “satisfiable”) into H;

return “satisfiable”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
Insert (R(¢[t]), “unsatisfiable”) into H;
return “unsatisfiable”;
end if
end if
: end if

—_
A sl

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 683

The Proof (continued)

Since R is a reduction, R(¢[t]) = R(¢[t']) implies that
¢[t] and ¢[t' | must be both satisfiable or unsatisfiable.

R(¢[t]) has polynomial length < p(n) because R runs in
log space.

As R maps to unary numbers, there are only

polynomially many p(n) values of R(¢[t]).

How many nodes of the complete binary tree (of
invocations/truth assignments) need to be visited?

If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 684

The Proof (continued)

e A search of the table takes time O(p(n)) in the random

access memory model.

e The running time is O(Mp(n)), where M is the total

number of invocations of the algorithm.

e The invocations of the algorithm form a binary tree of
depth at most n.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 685

The Proof (continued)

e There is a set T' = {t1,to,...} of invocations (partial
truth assignments, i.e.) such that:

1. |T| > (M —1)/(2n).
2. All invocations in T are recursive (nonleaves).

3. None of the elements of 1" is a prefix of another.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 686

3rd step: Delete all 1's

at most »n ancestors

(prefixes) from

further consideration 2nd step: Select any

bottom undeleted
invocation ¢ and add
itto 7

\ I st step: Delete
leaves; (M —1)/2

nonleaves remaining

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 687

An Example

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 688

The Proof (continued)

e All invocations t € T have different R(¢[t]) values.

— None of h,j € T is a prefix of the other.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
second would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of T' implies that there are at least
(M —1)/(2n) different R(¢[t]) values in the table.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 689

The Proof (concluded)

We already know that there are at most p(n) such

values.

Hence (M —1)/(2n) < p(n).

Thus M < 2np(n) + 1.

The running time is therefore O(Mp(n)) = O(np?(n)).

We comment that this theorem holds for any sparse

language, not just unary ones.?

@Mahaney (1980).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 690

coNP-Completeness and Density

Theorem 82 (Fortung (1979)) If a unary language
U C {0}* is coNP-complete, then P = NP.

e Suppose there is a reduction R from SAT COMPLEMENT
to U.

e The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 691

