Theory of Computation

Solutions to Homework 4

Problem 1. Please calculate \varnothing (313716) and $77^{192960} \bmod 313716$. (You need to write down the steps explicitly. Providing merely the final result is not satisfactory.)

Sof. Note that $313716=2^{2} \times 3 \times 13 \times 2011$ and

$$
\varnothing(n)=313716 \times \frac{1}{2} \times \frac{2}{3} \times \frac{12}{13} \times \frac{2010}{2011}=96480 .
$$

By the Fermat-Euler theorem (Corollary 56),

$$
\left(77^{96480}\right)^{2}=77^{96480}=1 \bmod 313716
$$

Problem 2. Show that $\mathrm{NP}=$ co-NP if there exists an NP-complete language that belongs to co-NP.

Proof. Suppose X is NP-complete and $X \in$ co-NP. Let a polynomial-time NTM M decide X. For any language $Y \in \mathrm{NP}$, there is a reduction R from Y to X because X is NP-complete. Now, $X \in$ co-NP implies $Y \in$ co-NP by the closeness of reduction; hence

$$
\mathrm{NP} \subseteq \mathrm{co}-\mathrm{NP} .
$$

On the other hand, suppose $Y \in$ co-NP. Then there is a reduction R^{\prime} from \bar{Y} to X because $\bar{Y} \in$ NP and X is NP-complete. As a result, for all input strings x,

$$
x \in \bar{Y} \text { iff } \mathrm{R}^{\prime}(x) \in X
$$

This implies $\bar{Y} \in$ co-NP by the closeness of reduction and the assumption of $X \in$ co-NP. Consequently, $Y \in$ NP and

$$
\mathrm{co}-\mathrm{NP} \subseteq \mathrm{NP} .
$$

Thus, $\mathrm{NP}=$ co-NP.

