Theory of Computation

Solutions to Homework 4

Problem 1. Please calculate $\phi(313716)$ and 77^{192960} mod 313716. (You need to write down the steps explicitly. Providing merely the final result is not satisfactory.)

Sol. Note that $313716 = 2^2 \times 3 \times 13 \times 2011$ and

$$\phi(n) = 313716 \times \frac{1}{2} \times \frac{2}{3} \times \frac{12}{13} \times \frac{2010}{2011} = 96480.$$

By the Fermat-Euler theorem (Corollary 56),

 $(77^{96480})^2 = 77^{96480} = 1 \mod{313716}.$

Problem 2. Show that NP = co-NP if there exists an NP-complete language that belongs to co-NP.

Proof. Suppose X is NP-complete and $X \in \text{co-NP}$. Let a polynomial-time NTM M decide X. For any language $Y \in \text{NP}$, there is a reduction R from Y to X because X is NP-complete. Now, $X \in \text{co-NP}$ implies $Y \in \text{co-NP}$ by the closeness of reduction; hence

NP \subseteq co-NP.

On the other hand, suppose $Y \in \text{co-NP}$. Then there is a reduction R' from \overline{Y} to X because $\overline{Y} \in \text{NP}$ and X is NP-complete. As a result, for all input strings x,

 $x \in \overline{Y}$ iff $R'(x) \in X$.

This implies $\overline{Y} \in \text{co-NP}$ by the closeness of reduction and the assumption of $X \in \text{co-NP}$. Consequently, $Y \in \text{NP}$ and

$$co-NP \subseteq NP$$
.

Thus, NP = co-NP.