Large Deviations

- Suppose you have a biased coin.
- One side has probability $0.5+\epsilon$ to appear and the other $0.5-\epsilon$, for some $0<\epsilon<0.5$.
- But you do not know which is which.
- How to decide which side is the more likely side - with high confidence?
- Answer: Flip the coin many times and pick the side that appeared the most times.
- Question: Can you quantify the confidence?

The Chernoff Bound ${ }^{\text {a }}$

Theorem 69 (Chernoff (1952)) Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are independent random variables taking the values 1 and 0 with probabilities p and $1-p$, respectively. Let $X=\sum_{i=1}^{n} x_{i}$. Then for all $0 \leq \theta \leq 1$,

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-\theta^{2} p n / 3} .
$$

- The probability that the deviate of a binomial random variable from its expected value

$$
E[X]=E\left[\sum_{i=1}^{n} x_{i}\right]=p n
$$

decreases exponentially with the deviation.

[^0]
The Proof

- Let t be any positive real number.
- Then

$$
\operatorname{prob}[X \geq(1+\theta) p n]=\operatorname{prob}\left[e^{t X} \geq e^{t(1+\theta) p n}\right]
$$

- Markov's inequality (p. 460) generalized to real-valued random variables says that

$$
\operatorname{prob}\left[e^{t X} \geq k E\left[e^{t X}\right]\right] \leq 1 / k
$$

- With $k=e^{t(1+\theta) p n} / E\left[e^{t X}\right]$, we have

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-t(1+\theta) p n} E\left[e^{t X}\right]
$$

The Proof (continued)

- Because $X=\sum_{i=1}^{n} x_{i}$ and x_{i} 's are independent,

$$
E\left[e^{t X}\right]=\left(E\left[e^{t x_{1}}\right]\right)^{n}=\left[1+p\left(e^{t}-1\right)\right]^{n} .
$$

- Substituting, we obtain

$$
\begin{aligned}
& \operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-t(1+\theta) p n}\left[1+p\left(e^{t}-1\right)\right]^{n} \\
& \leq e^{-t(1+\theta) p n} e^{p n\left(e^{t}-1\right)} \\
& \text { as }(1+a)^{n} \leq e^{a n} \text { for all } a>0 .
\end{aligned}
$$

The Proof (concluded)

- With the choice of $t=\ln (1+\theta)$, the above becomes

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{p n[\theta-(1+\theta) \ln (1+\theta)]}
$$

- The exponent expands to $-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{6}-\frac{\theta^{4}}{12}+\cdots$ for $0 \leq \theta \leq 1$, which is less than

$$
-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{6} \leq \theta^{2}\left(-\frac{1}{2}+\frac{\theta}{6}\right) \leq \theta^{2}\left(-\frac{1}{2}+\frac{1}{6}\right)=-\frac{\theta^{2}}{3}
$$

Power of the Majority Rule

From $\operatorname{prob}[X \leq(1-\theta) p n] \leq e^{-\frac{\theta^{2}}{2} p n}$ (prove it):
Corollary 70 If $p=(1 / 2)+\epsilon$ for some $0 \leq \epsilon \leq 1 / 2$, then

$$
\operatorname{prob}\left[\sum_{i=1}^{n} x_{i} \leq n / 2\right] \leq e^{-\epsilon^{2} n / 2}
$$

- The textbook's corollary to Lemma 11.9 seems incorrect.
- Our original problem (p. 519) hence demands, e.g., $n \approx 1.4 k / \epsilon^{2}$ independent coin flips to guarantee making an error with probability $\leq 2^{-k}$ with the majority rule.

BPP ${ }^{\text {a }}$ (Bounded Probabilistic Polynomial)

- The class BPP contains all languages L for which there is a precise polynomial-time $\mathrm{NTM} N$ such that:
- If $x \in L$, then at least $3 / 4$ of the computation paths of N on x lead to "yes."
- If $x \notin L$, then at least $3 / 4$ of the computation paths of N on x lead to "no."
- So N accepts or rejects by a clear majority.

[^1]
Magic 3/4?

- The number $3 / 4$ bounds the probability (ratio) of a right answer away from $1 / 2$.
- Any constant strictly between $1 / 2$ and 1 can be used without affecting the class BPP.
- As with RP,

$$
\frac{1}{2}+\frac{1}{q(n)}
$$

for any polynomial $q(n)$ can be used in place of $3 / 4$ (p. 514).

The Majority Vote Algorithm

Suppose L is decided by N by majority $(1 / 2)+\epsilon$.
1: for $i=1,2, \ldots, 2 k+1$ do
2: \quad Run N on input x;
3: end for
4: if "yes" is the majority answer then
5: "yes";
6: else
7: "no";
8: end if

Analysis

- The running time remains polynomial, being $2 k+1$ times N 's running time.
- By Corollary 70 (p. 524), the probability of a false answer is at most $e^{-\epsilon^{2} k}$.
- By taking $k=\left\lceil 2 / \epsilon^{2}\right\rceil$, the error probability is at most 1/4.
- Recall that ϵ can be any inverse polynomial, because k remains polynomial in n.

Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
- If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
- In this aspect, BPP has effectively replaced P.
- $(R P \cup \operatorname{coRP}) \subseteq(N P \cup \operatorname{coNP})$.
- $(R P \cup \operatorname{coRP}) \subseteq B P P$.
- Whether $\mathrm{BPP} \subseteq(\mathrm{NP} \cup$ coNP $)$ is unknown.
- But it is unlikely that $\mathrm{NP} \subseteq \mathrm{BPP}$ (see p. 545).

coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in$ BPP becomes one for \bar{L} by reversing the answer.
- So $\bar{L} \in \mathrm{BPP}$ and $\mathrm{BPP} \subseteq$ coBPP.
- Similarly coBPP \subseteq BPP.
- Hence BPP $=$ coBPP.
- This approach does not work for RP.
- It did not work for NP either.

BPP and coBPP

"The Good, the Bad, and the Ugly"

Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with n inputs computes a boolean function of n variables.
- By identifying true/1 with "yes" and false/0 with "no," a boolean circuit with n inputs accepts certain strings in $\{0,1\}^{n}$.
- To relate circuits with an arbitrary language, we need one circuit for each possible input length n.

Formal Definitions

- The size of a circuit is the number of gates in it.
- A family of circuits is an infinite sequence $\mathcal{C}=\left(C_{0}, C_{1}, \ldots\right)$ of boolean circuits, where C_{n} has n boolean inputs.
- For input $x \in\{0,1\}^{*}, C_{|x|}$ outputs 1 if and only if $x \in L$.
- In other words,

$$
C_{n} \text { accepts } L \cap\{0,1\}^{n} .
$$

Formal Definitions (concluded)

- $L \subseteq\{0,1\}^{*}$ has polynomial circuits if there is a family of circuits \mathcal{C} such that:
- The size of C_{n} is at most $p(n)$ for some fixed polynomial p.
- C_{n} accepts $L \cap\{0,1\}^{n}$.

Exponential Circuits Suffice for All Languages

- Theorem 15 (p. 173) implies that there are languages that cannot be solved by circuits of size $2^{n} /(2 n)$.
- But exponential circuits can solve all problems.

Proposition 71 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2}.

- We will show that for any language $L \subseteq\{0,1\}^{*}$, $L \cap\{0,1\}^{n}$ can be decided by a circuit of size 2^{n+2}.

The Proof (concluded)

- Define boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, where

$$
f\left(x_{1} x_{2} \cdots x_{n}\right)= \begin{cases}1 & x_{1} x_{2} \cdots x_{n} \in L \\ 0 & x_{1} x_{2} \cdots x_{n} \notin L\end{cases}
$$

- $f\left(x_{1} x_{2} \cdots x_{n}\right)=\left(x_{1} \wedge f\left(1 x_{2} \cdots x_{n}\right)\right) \vee\left(\neg x_{1} \wedge f\left(0 x_{2} \cdots x_{n}\right)\right)$.
- The circuit size $s(n)$ for $f\left(x_{1} x_{2} \cdots x_{n}\right)$ hence satisfies

$$
s(n)=4+2 s(n-1)
$$

with $s(1)=1$.

- Solve it to obtain $s(n)=5 \times 2^{n-1}-4 \leq 2^{n+2}$.

The Circuit Complexity of P

Proposition 72 All languages in P have polynomial circuits.

- Let $L \in \mathrm{P}$ be decided by a TM in time $p(n)$.
- By Corollary 32 (p.264), there is a circuit with $O\left(p(n)^{2}\right)$ gates that accepts $L \cap\{0,1\}^{n}$.
- The size of the circuit depends only on L and the length of the input.
- The size of the circuit is polynomial in n.

Polynomial Circuits vs. P

- Is the converse of Proposition 72 true?
- Do polynomial circuits accept only languages in P?
- No.
- Polynomial circuits can accept undecidable languages!

Languages That Polynomial Circuits Accept (concluded)

- Let $L \subseteq\{0,1\}^{*}$ be an undecidable language.
- Let $U=\left\{1^{n}\right.$: the binary expansion of n is in $\left.L\right\}$. ${ }^{\text {a }}$
- For example, $11111_{1} \in U$ if $101_{2} \in L$.
- U is also undecidable.
- $U \cap\{1\}^{n}$ can be accepted by the trivial circuit C_{n} that outputs 1 if $1^{n} \in U$ and outputs 0 if $1^{n} \notin U$. ${ }^{\text {b }}$
- The family of circuits $\left(C_{0}, C_{1}, \ldots\right)$ is polynomial in size.

[^2]
A Patch

- Despite the simplicity of a circuit, the previous discussions imply the following:
- Circuits are not a realistic model of computation.
- Polynomial circuits are not a plausible notion of efficient computation.
- What is missing?
- The effective and efficient constructibility of

$$
C_{0}, C_{1}, \ldots
$$

Uniformity

- A family $\left(C_{0}, C_{1}, \ldots\right)$ of circuits is uniform if there is a $\log n$-space bounded TM which on input 1^{n} outputs C_{n}.
- Note that n is the length of the input to C_{n}.
- Circuits now cannot accept undecidable languages (why?).
- The circuit family on p. 540 is not constructible by a single Turing machine (algorithm).
- A language has uniformly polynomial circuits if there is a uniform family of polynomial circuits that decide it.

Uniformly Polynomial Circuits and P

Theorem $73 L \in P$ if and only if L has uniformly polynomial circuits.

- One direction was proved in Proposition 72 (p. 538).
- Now suppose L has uniformly polynomial circuits.
- A TM decides $x \in L$ in polynomial time as follows:
- Calculate $n=|x|$.
- Generate C_{n} in $\log n$ space, hence polynomial time.
- Evaluate the circuit with input x in polynomial time.
- Therefore $L \in \mathrm{P}$.

Relation to P vs. NP

- Theorem 73 implies that $\mathrm{P} \neq \mathrm{NP}$ if and only if NP-complete problems have no uniformly polynomial circuits.
- A stronger conjecture: NP-complete problems have no polynomial circuits, uniformly or not.
- The above is currently the preferred approach to proving the $\mathrm{P} \neq \mathrm{NP}$ conjecture - without success so far.

BPP's Circuit Complexity

Theorem 74 (Adleman (1978)) All languages in BPP have polynomial circuits.

- Our proof will be nonconstructive in that only the existence of the desired circuits is shown.
- Recall our proof of Theorem 15 (p. 173).
- Something exists if its probability of existence is nonzero.
- It is not known how to efficiently generate circuit C_{n}.
- If the construction of C_{n} can be made efficient, then $\mathrm{P}=\mathrm{BPP}$, an unlikely result.

The Proof

- Let $L \in$ BPP be decided by a precise NTM N by clear majority.
- We shall prove that L has polynomial circuits C_{0}, C_{1}, \ldots. - These circuits cannot make mistakes.
- Suppose N runs in time $p(n)$, where $p(n)$ is a polynomial.
- Let $A_{n}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, where $a_{i} \in\{0,1\}^{p(n)}$.
- Each $a_{i} \in A_{n}$ represents a sequence of nondeterministic choices (i.e., a computation path) for N.
- Pick $m=12(n+1)$.

The Proof (continued)

- Let x be an input with $|x|=n$.
- Circuit C_{n} simulates N on x with each sequence of choices in A_{n} and then takes the majority of the m outcomes. ${ }^{\text {a }}$
- As N with a_{i} is a polynomial-time deterministic TM, it can be simulated by polynomial circuits of size $O\left(p(n)^{2}\right)$.
- See the proof of Proposition 72 (p. 538).
- The size of C_{n} is therefore $O\left(m p(n)^{2}\right)=O\left(n p(n)^{2}\right)$.
- This is a polynomial.

[^3]

The Proof (continued)

- We now prove the existence of an A_{n} making C_{n} correct on all n-bit inputs.
- Call a_{i} bad if it leads N to a false positive or a false negative.
- Select A_{n} uniformly randomly.
- For each $x \in\{0,1\}^{n}, 1 / 4$ of the computations of N are erroneous.
- Because the sequences in A_{n} are chosen randomly and independently, the expected number of bad a_{i} 's is $m / 4$.

The Proof (continued)

- By the Chernoff bound (p. 520), the probability that the number of bad a_{i} ' s is $m / 2$ or more is at most

$$
e^{-m / 12}<2^{-(n+1)}
$$

- The error probability of using majority rule is thus $<2^{-(n+1)}$ for each $x \in\{0,1\}^{n}$.
- The probability that there is an x such that A_{n} results in an incorrect answer is $<2^{n} 2^{-(n+1)}=2^{-1}$.
$-\operatorname{prob}[A \cup B \cup \cdots] \leq \operatorname{prob}[A]+\operatorname{prob}[B]+\cdots$.
- Note that each A_{n} yields a circuit.

The Proof (concluded)

- We just showed that at least half of them are correct.
- So with probability ≥ 0.5, a random A_{n} produces a correct C_{n} for all inputs of length n.
- Because this probability exceeds 0 , an A_{n} that makes majority vote work for all inputs of length n exists.
- Hence a correct C_{n} exists. ${ }^{\text {a }}$
- We have used the probabilistic method.
${ }^{\text {a }}$ Quine (1948), "To be is to be the value of a bound variable."

Leonard Adleman ${ }^{\text {a }}$ (1945-)

${ }^{\text {a }}$ Turing Award (2002).

Cryptography

Whoever wishes to keep a secret must hide the fact that he possesses one. - Johann Wolfgang von Goethe (1749-1832)

Cryptography

- Alice (A) wants to send a message to Bob (B) over a channel monitored by Eve (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is cryptography.

$$
\text { Alice } \xrightarrow{\text { Eve }} \text { Bob }
$$

Encryption and Decryption

- Alice and Bob agree on two algorithms E and D-the encryption and the decryption algorithms.
- Both E and D are known to the public in the analysis.
- Alice runs E and wants to send a message x to Bob.
- Bob operates D.
- Privacy is assured in terms of two numbers e, d, the encryption and decryption keys.
- Alice sends $y=E(e, x)$ to Bob, who then performs $D(d, y)=x$ to recover x.
- x is called plaintext, and y is called ciphertext. ${ }^{\text {a }}$

[^4]
Some Requirements

- D should be an inverse of E given e and d.
- D and E must both run in (probabilistic) polynomial time.
- Eve should not be able to recover x from y without knowing d.
- As D is public, d must be kept secret.
- e may or may not be a secret.

Degrees of Security

- Perfect secrecy: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.
- The probability that plaintext \mathcal{P} occurs is independent of the ciphertext \mathcal{C} being observed.
- So knowing \mathcal{C} yields no advantage in recovering \mathcal{P}.
- Such systems are said to be informationally secure.
- A system is computationally secure if breaking it is theoretically possible but computationally infeasible.

Conditions for Perfect Secrecy ${ }^{\text {a }}$

- Consider a cryptosystem where:
- The space of ciphertext is as large as that of keys.
- Every plaintext has a nonzero probability of being used.
- It is perfectly secure if and only if the following hold.
- A key is chosen with uniform distribution.
- For each plaintext x and ciphertext y, there exists a unique key e such that $E(e, x)=y$.

[^5]
The One-Time Pad ${ }^{\text {a }}$

1: Alice generates a random string r as long as x;
2: Alice sends r to Bob over a secret channel;
3: Alice sends $r \oplus x$ to Bob over a public channel;
4: Bob receives y;
5: Bob recovers $x:=y \oplus r$;

[^6]
Analysis

- The one-time pad uses $e=d=r$.
- This is said to be a private-key cryptosystem.
- Knowing x and knowing r are equivalent.
- Because r is random and private, the one-time pad achieves perfect secrecy (see also p. 559).
- The random bit string must be new for each round of communication.
- Cryptographically strong pseudorandom generators require exchanging only the seed once.
- The assumption of a private channel is problematic.

Public-Key Cryptography ${ }^{\text {a }}$

- Suppose only d is private to Bob, whereas e is public knowledge.
- Bob generates the (e, d) pair and publishes e.
- Anybody like Alice can send $E(e, x)$ to Bob.
- Knowing d, Bob can recover x by $D(d, E(e, x))=x$.
- The assumptions are complexity-theoretic.
- It is computationally difficult to compute d from e.
- It is computationally difficult to compute x from y without knowing d.

[^7]
Whitfield Diffie (1944-)

Martin Hellman (1945-)

Complexity Issues

- Given y and x, it is easy to verify whether $E(e, x)=y$.
- Hence one can always guess an x and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $\mathrm{P} \neq \mathrm{NP}$.
- But more is needed than $\mathrm{P} \neq \mathrm{NP}$.
- For instance, it is not sufficient that D is hard to compute in the worst case.
- It should be hard in "most" or "average" cases.

One-Way Functions

A function f is a one-way function if the following hold. ${ }^{\text {a }}$

1. f is one-to-one.
2. For all $x \in \Sigma^{*},|x|^{1 / k} \leq|f(x)| \leq|x|^{k}$ for some $k>0$.

- f is said to be honest.

3. f can be computed in polynomial time.
4. f^{-1} cannot be computed in polynomial time.

- Exhaustive search works, but it is too slow.
${ }^{\text {a }}$ Diffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe (1985); Young (1983).

Existence of One-Way Functions

- Even if $\mathrm{P} \neq \mathrm{NP}$, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
- Is breaking glass a one-way function?

Candidates of One-Way Functions

- Modular exponentiation $f(x)=g^{x} \bmod p$, where g is a primitive root of p.
- Discrete logarithm is hard. ${ }^{a}$
- The RSA ${ }^{\text {b }}$ function $f(x)=x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- Breaking the RSA function is hard.
${ }^{\text {a }}$ Conjectured to be $2^{n^{\epsilon}}$ for some $\epsilon>0$ in both the worst-case sense and average sense. It is in NP in some sense (Grollmann and Selman (1988)).
${ }^{\mathrm{b}}$ Rivest, Shamir, and Adleman (1978).

Candidates of One-Way Functions (concluded)

- Modular squaring $f(x)=x^{2} \bmod p q$.
- Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard - the quadratic residuacity assumption (QRA). ${ }^{\text {a }}$

[^8]
The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- By Lemma 52 (p. 404),

$$
\begin{equation*}
\phi(p q)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=p q-p-q+1 \tag{8}
\end{equation*}
$$

- As $\operatorname{gcd}(e, \phi(p q))=1$, there is a d such that

$$
e d \equiv 1 \bmod \phi(p q)
$$

which can be found by the Euclidean algorithm.

A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes $p q$ and the encryption key e, a number relatively prime to $\phi(p q)$.
- The encryption function is $y=x^{e} \bmod p q$.
- Bob calculates $\phi(p q)$ by Eq. (8) (p. 570).
- Bob then calculates d such that $e d=1+k \phi(p q)$ for some $k \in \mathbb{Z}$.
- The decryption function is $y^{d} \bmod p q$.
- It works because $y^{d}=x^{e d}=x^{1+k \phi(p q)}=x \bmod p q$ by the Fermat-Euler theorem when $\operatorname{gcd}(x, p q)=1$ (p. 414).

The "Security" of the RSA Function

- Factoring $p q$ or calculating d from ($e, p q$) seems hard.
- See also p. 410.
- Breaking the last bit of RSA is as hard as breaking the RSA. ${ }^{\text {a }}$
- Recommended RSA key sizes: ${ }^{\text {b }}$
- 1024 bits up to 2010.
- 2048 bits up to 2030.
- 3072 bits up to 2031 and beyond.

[^9]
The "Security" of the RSA Function (concluded)

- Recall that problem A is "harder than" problem B if solving A results in solving B.
- Factorization is "harder than" breaking the RSA.
- Calculating Euler's phi function is "harder than" breaking the RSA.
- Factorization is "harder than" calculating Euler's phi function (see Lemma 52 on p. 404).
- So factorization is harder than calculating Euler's phi function, which is harder than breaking the RSA.
- Factorization cannot be NP-hard unless NP = coNP. ${ }^{\text {a }}$
- So breaking the RSA is unlikely to imply $\mathrm{P}=\mathrm{NP}$.
${ }^{\text {a }}$ Brassard (1979).

Adi Shamir, Ron Rivest, and Leonard Adleman

Ron Rivest ${ }^{\text {a }}$ (1947-)

${ }^{\text {a }}$ Turing Award (2002).

Adi Shamir ${ }^{\text {a }}$ (1952-)

${ }^{\text {a }}$ Turing Award (2002).

[^0]: ${ }^{\text {a }}$ Herman Chernoff (1923-). The bound is asymptotically optimal.

[^1]: ${ }^{a}$ Gill (1977).

[^2]: ${ }^{\text {a }}$ Assume n 's leading bit is always 1 without loss of generality.
 ${ }^{\mathrm{b}}$ We may not know which is the case for general n.

[^3]: ${ }^{a}$ As m is even, there may be no clear majority. Still, the probability of that happening is very small and does not materially affect our general conclusion. Thanks to a lively class discussion on December 14, 2010.

[^4]: aBoth "zero" and "cipher" come from the same Arab word.

[^5]: ${ }^{\text {a }}$ Shannon (1949).

[^6]: ${ }^{\text {a }}$ Mauborgne and Vernam (1917); Shannon (1949). It was allegedly used for the hotline between Russia and U.S.

[^7]: ${ }^{\text {a }}$ Diffie and Hellman (1976).

[^8]: ${ }^{\text {a }}$ Due to Gauss.

[^9]: ${ }^{\text {a }}$ Alexi, Chor, Goldreich, and Schnorr (1988).
 ${ }^{\mathrm{b}}$ RSA (2003).

