Large Deviations

- Suppose you have a *biased* coin.
- One side has probability $0.5 + \epsilon$ to appear and the other 0.5ϵ , for some $0 < \epsilon < 0.5$.
- But you do not know which is which.
- How to decide which side is the more likely side—with high confidence?
- Answer: Flip the coin many times and pick the side that appeared the most times.
- Question: Can you quantify the confidence?

The Chernoff Bound $^{\rm a}$

Theorem 69 (Chernoff (1952)) Suppose $x_1, x_2, ..., x_n$ are independent random variables taking the values 1 and 0 with probabilities p and 1 - p, respectively. Let $X = \sum_{i=1}^{n} x_i$. Then for all $0 \le \theta \le 1$,

$$\operatorname{prob}[X \ge (1+\theta) \, pn] \le e^{-\theta^2 pn/3}.$$

• The probability that the deviate of a **binomial random variable** from its expected value

$$E[X] = E\left[\sum_{i=1}^{n} x_i\right] = pn$$

decreases exponentially with the deviation.

^aHerman Chernoff (1923–). The bound is asymptotically optimal.

The Proof

• Let t be any positive real number.

• Then

$$\operatorname{prob}[X \ge (1+\theta) \, pn] = \operatorname{prob}[e^{tX} \ge e^{t(1+\theta) \, pn}].$$

• Markov's inequality (p. 460) generalized to real-valued random variables says that

$$\operatorname{prob}\left[e^{tX} \ge kE[e^{tX}]\right] \le 1/k.$$

• With $k = e^{t(1+\theta) pn} / E[e^{tX}]$, we have

$$\operatorname{prob}[X \ge (1+\theta) pn] \le e^{-t(1+\theta) pn} E[e^{tX}].$$

• Because $X = \sum_{i=1}^{n} x_i$ and x_i 's are independent, $E[e^{tX}] = (E[e^{tx_1}])^n = [1 + e(e^t - 1)]^n$

$$E[e^{tX}] = (E[e^{tx_1}])^n = [1 + p(e^t - 1)]^n$$

• Substituting, we obtain

$$\operatorname{prob}[X \ge (1+\theta) pn] \le e^{-t(1+\theta) pn} [1+p(e^t-1)]^n$$
$$\le e^{-t(1+\theta) pn} e^{pn(e^t-1)}$$

as
$$(1+a)^n \le e^{an}$$
 for all $a > 0$.

The Proof (concluded)

- With the choice of $t = \ln(1 + \theta)$, the above becomes $\operatorname{prob}[X \ge (1 + \theta) pn] \le e^{pn[\theta - (1 + \theta) \ln(1 + \theta)]}.$
- The exponent expands to $-\frac{\theta^2}{2} + \frac{\theta^3}{6} \frac{\theta^4}{12} + \cdots$ for $0 \le \theta \le 1$, which is less than

$$-\frac{\theta^2}{2} + \frac{\theta^3}{6} \le \theta^2 \left(-\frac{1}{2} + \frac{\theta}{6} \right) \le \theta^2 \left(-\frac{1}{2} + \frac{1}{6} \right) = -\frac{\theta^2}{3}.$$

Power of the Majority Rule From prob $[X \le (1 - \theta) pn] \le e^{-\frac{\theta^2}{2}pn}$ (prove it): Corollary 70 If $p = (1/2) + \epsilon$ for some $0 \le \epsilon \le 1/2$, then prob $\left[\sum_{i=1}^n x_i \le n/2\right] \le e^{-\epsilon^2 n/2}$.

- The textbook's corollary to Lemma 11.9 seems incorrect.
- Our original problem (p. 519) hence demands, e.g., $n \approx 1.4k/\epsilon^2$ independent coin flips to guarantee making an error with probability $\leq 2^{-k}$ with the majority rule.

BPP^a (Bounded Probabilistic Polynomial)

- The class **BPP** contains all languages *L* for which there is a precise polynomial-time NTM *N* such that:
 - If $x \in L$, then at least 3/4 of the computation paths of N on x lead to "yes."
 - If $x \notin L$, then at least 3/4 of the computation paths of N on x lead to "no."
- So N accepts or rejects by a *clear* majority.

 a Gill (1977).

Magic 3/4?

- The number 3/4 bounds the probability (ratio) of a right answer away from 1/2.
- Any constant *strictly* between 1/2 and 1 can be used without affecting the class BPP.
- As with RP,

$$\frac{1}{2} + \frac{1}{q(n)}$$

for any polynomial q(n) can be used in place of 3/4 (p. 514).

The Majority Vote Algorithm

Suppose L is decided by N by majority $(1/2) + \epsilon$.

- 1: for $i = 1, 2, \ldots, 2k + 1$ do
- 2: Run N on input x;
- 3: end for
- 4: if "yes" is the majority answer then
- 5: "yes";
- 6: **else**
- 7: "no";
- 8: end if

Analysis

- The running time remains polynomial, being 2k + 1 times N's running time.
- By Corollary 70 (p. 524), the probability of a false answer is at most $e^{-\epsilon^2 k}$.
- By taking $k = \lceil 2/\epsilon^2 \rceil$, the error probability is at most 1/4.
- Recall that ϵ can be any inverse polynomial, because k remains polynomial in n.

Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
 - If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
 - In this aspect, BPP has effectively replaced P.
- $(RP \cup coRP) \subseteq (NP \cup coNP).$
- $(RP \cup coRP) \subseteq BPP.$
- Whether $BPP \subseteq (NP \cup coNP)$ is unknown.
- But it is unlikely that $NP \subseteq BPP$ (see p. 545).

coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in BPP$ becomes one for \overline{L} by reversing the answer.
- So $\overline{L} \in BPP$ and $BPP \subseteq coBPP$.
- Similarly $coBPP \subseteq BPP$.
- Hence BPP = coBPP.
- This approach does not work for RP.
- It did not work for NP either.

Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with *n* inputs computes a boolean function of *n* variables.
- By identifying true/1 with "yes" and false/0 with "no," a boolean circuit with n inputs accepts certain strings in {0,1}ⁿ.
- To relate circuits with an arbitrary language, we need one circuit for each possible input length n.

Formal Definitions

- The **size** of a circuit is the number of *gates* in it.
- A family of circuits is an infinite sequence $C = (C_0, C_1, ...)$ of boolean circuits, where C_n has n boolean inputs.
- For input $x \in \{0,1\}^*$, $C_{|x|}$ outputs 1 if and only if $x \in L$.
- In other words,

 C_n accepts $L \cap \{0,1\}^n$.

Formal Definitions (concluded)

- L ⊆ {0,1}* has polynomial circuits if there is a family of circuits C such that:
 - The size of C_n is at most p(n) for some fixed polynomial p.
 - $-C_n$ accepts $L \cap \{0,1\}^n$.

Exponential Circuits Suffice for All Languages

- Theorem 15 (p. 173) implies that there are languages that cannot be solved by circuits of size $2^n/(2n)$.
- But exponential circuits can solve all problems.

Proposition 71 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2} .

• We will show that for any language $L \subseteq \{0, 1\}^*$, $L \cap \{0, 1\}^n$ can be decided by a circuit of size 2^{n+2} .

The Proof (concluded)

• Define boolean function $f: \{0,1\}^n \to \{0,1\}$, where

$$f(x_1x_2\cdots x_n) = \begin{cases} 1 & x_1x_2\cdots x_n \in L, \\ 0 & x_1x_2\cdots x_n \notin L. \end{cases}$$

•
$$f(x_1x_2\cdots x_n) = (x_1 \wedge f(1x_2\cdots x_n)) \vee (\neg x_1 \wedge f(0x_2\cdots x_n)).$$

• The circuit size s(n) for $f(x_1x_2\cdots x_n)$ hence satisfies

$$s(n) = 4 + 2s(n-1)$$

with s(1) = 1.

• Solve it to obtain $s(n) = 5 \times 2^{n-1} - 4 \le 2^{n+2}$.

The Circuit Complexity of P

Proposition 72 All languages in P have polynomial circuits.

- Let $L \in P$ be decided by a TM in time p(n).
- By Corollary 32 (p. 264), there is a circuit with $O(p(n)^2)$ gates that accepts $L \cap \{0, 1\}^n$.
- The size of the circuit depends only on L and the length of the input.
- The size of the circuit is polynomial in n.

Polynomial Circuits vs. P

- Is the converse of Proposition 72 true?
 - Do polynomial circuits accept only languages in P?
- No.
- Polynomial circuits can accept *undecidable* languages!

Languages That Polynomial Circuits Accept (concluded)

- Let $L \subseteq \{0,1\}^*$ be an undecidable language.
- Let $U = \{1^n : \text{the binary expansion of } n \text{ is in } L\}.^a$

- For example, $11111_1 \in U$ if $101_2 \in L$.

- U is also undecidable.
- $U \cap \{1\}^n$ can be accepted by the trivial circuit C_n that outputs 1 if $1^n \in U$ and outputs 0 if $1^n \notin U$.^b
- The family of circuits (C_0, C_1, \ldots) is polynomial in size.

^aAssume *n*'s leading bit is always 1 without loss of generality. ^bWe may not know which is the case for general n.

A Patch

- Despite the simplicity of a circuit, the previous discussions imply the following:
 - Circuits are *not* a realistic model of computation.
 - Polynomial circuits are *not* a plausible notion of efficient computation.
- What is missing?
- The effective and efficient constructibility of

 C_0, C_1, \ldots

Uniformity

- A family (C_0, C_1, \ldots) of circuits is **uniform** if there is a log *n*-space bounded TM which on input 1^n outputs C_n .
 - Note that n is the length of the input to C_n .
 - Circuits now cannot accept undecidable languages (why?).
 - The circuit family on p. 540 is not constructible by a single Turing machine (algorithm).
- A language has **uniformly polynomial circuits** if there is a *uniform* family of polynomial circuits that decide it.

Uniformly Polynomial Circuits and P

Theorem 73 $L \in P$ if and only if L has uniformly polynomial circuits.

- One direction was proved in Proposition 72 (p. 538).
- Now suppose L has uniformly polynomial circuits.
- A TM decides $x \in L$ in polynomial time as follows:
 - Calculate n = |x|.
 - Generate C_n in log *n* space, hence polynomial time.
 - Evaluate the circuit with input x in polynomial time.
- Therefore $L \in \mathbf{P}$.

Relation to P vs. NP

- Theorem 73 implies that P ≠ NP if and only if NP-complete problems have no *uniformly* polynomial circuits.
- A stronger conjecture: NP-complete problems have no polynomial circuits, *uniformly or not*.
- The above is currently the preferred approach to proving the $P \neq NP$ conjecture—without success so far.

BPP's Circuit Complexity

Theorem 74 (Adleman (1978)) All languages in BPP have polynomial circuits.

- Our proof will be *nonconstructive* in that only the existence of the desired circuits is shown.
 - Recall our proof of Theorem 15 (p. 173).
 - Something exists if its probability of existence is nonzero.
- It is not known how to efficiently generate circuit C_n .
- If the construction of C_n can be made efficient, then P = BPP, an unlikely result.

The Proof

- Let $L \in BPP$ be decided by a precise NTM N by clear majority.
- We shall prove that L has polynomial circuits C_0, C_1, \ldots

– These circuits cannot make mistakes.

- Suppose N runs in time p(n), where p(n) is a polynomial.
- Let $A_n = \{a_1, a_2, \dots, a_m\}$, where $a_i \in \{0, 1\}^{p(n)}$.
- Each $a_i \in A_n$ represents a sequence of nondeterministic choices (i.e., a computation path) for N.

• Pick
$$m = 12(n+1)$$
.

- Let x be an input with |x| = n.
- Circuit C_n simulates N on x with each sequence of choices in A_n and then takes the majority of the m outcomes.^a
- As N with a_i is a polynomial-time deterministic TM, it can be simulated by polynomial circuits of size $O(p(n)^2)$.

- See the proof of Proposition 72 (p. 538).

• The size of C_n is therefore $O(mp(n)^2) = O(np(n)^2)$.

– This is a polynomial.

^aAs m is even, there may be no clear majority. Still, the probability of that happening is very small and does not materially affect our general conclusion. Thanks to a lively class discussion on December 14, 2010.

- We now prove the existence of an A_n making C_n correct on *all n*-bit inputs.
- Call a_i bad if it leads N to a false positive or a false negative.
- Select A_n uniformly randomly.
- For each $x \in \{0,1\}^n$, 1/4 of the computations of N are erroneous.
- Because the sequences in A_n are chosen randomly and independently, the expected number of bad a_i 's is m/4.

• By the Chernoff bound (p. 520), the probability that the number of bad a_i 's is m/2 or more is at most

$$e^{-m/12} < 2^{-(n+1)}.$$

- The error probability of using majority rule is thus $< 2^{-(n+1)}$ for each $x \in \{0,1\}^n$.
- The probability that there is an x such that A_n results in an incorrect answer is $< 2^n 2^{-(n+1)} = 2^{-1}$.

 $-\operatorname{prob}[A \cup B \cup \cdots] \leq \operatorname{prob}[A] + \operatorname{prob}[B] + \cdots.$

• Note that each A_n yields a circuit.

The Proof (concluded)

- We just showed that at least half of them are correct.
- So with probability ≥ 0.5 , a random A_n produces a correct C_n for all inputs of length n.
- Because this probability exceeds 0, an A_n that makes majority vote work for all inputs of length n exists.
- Hence a correct C_n exists.^a
- We have used the **probabilistic method**.

^aQuine (1948), "To be is to be the value of a bound variable."

Leonard Adleman^a (1945–)

^aTuring Award (2002).

Cryptography

Whoever wishes to keep a secret must hide the fact that he possesses one. — Johann Wolfgang von Goethe (1749–1832)

Cryptography

- Alice (A) wants to send a message to **Bob** (B) over a channel monitored by **Eve** (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is **cryptography**.

Alice ───► Bob

Encryption and Decryption

- Alice and Bob agree on two algorithms *E* and *D*—the **encryption** and the **decryption algorithms**.
- Both E and D are known to the public in the analysis.
- Alice runs E and wants to send a message x to Bob.
- Bob operates D.
- Privacy is assured in terms of two numbers *e*, *d*, the **encryption** and **decryption keys**.
- Alice sends y = E(e, x) to Bob, who then performs D(d, y) = x to recover x.
- x is called **plaintext**, and y is called **ciphertext**.^a

^aBoth "zero" and "cipher" come from the same Arab word.

Some Requirements

- D should be an inverse of E given e and d.
- *D* and *E* must both run in (probabilistic) polynomial time.
- Eve should not be able to recover x from y without knowing d.
 - As D is public, d must be kept secret.
 - -e may or may not be a secret.

Degrees of Security

- **Perfect secrecy**: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.
 - The probability that plaintext \mathcal{P} occurs is independent of the ciphertext \mathcal{C} being observed.
 - So knowing \mathcal{C} yields no advantage in recovering \mathcal{P} .
- Such systems are said to be **informationally secure**.
- A system is **computationally secure** if breaking it is theoretically possible but computationally infeasible.

Conditions for Perfect Secrecy $^{\rm a}$

- Consider a cryptosystem where:
 - The space of ciphertext is as large as that of keys.
 - Every plaintext has a nonzero probability of being used.
- It is perfectly secure if and only if the following hold.
 - A key is chosen with uniform distribution.
 - For each plaintext x and ciphertext y, there exists a unique key e such that E(e, x) = y.

^aShannon (1949).

The One-Time Pad^a

- 1: Alice generates a random string r as long as x;
- 2: Alice sends r to Bob over a secret channel;
- 3: Alice sends $r \oplus x$ to Bob over a public channel;
- 4: Bob receives y;
- 5: Bob recovers $x := y \oplus r$;

^aMauborgne and Vernam (1917); Shannon (1949). It was allegedly used for the hotline between Russia and U.S.

Analysis

- The one-time pad uses e = d = r.
- This is said to be a **private-key cryptosystem**.
- Knowing x and knowing r are equivalent.
- Because r is random and private, the one-time pad achieves perfect secrecy (see also p. 559).
- The random bit string must be new for each round of communication.
 - Cryptographically strong pseudorandom generators require exchanging only the seed once.
- The assumption of a private channel is problematic.

Public-Key Cryptography^a

- Suppose only d is private to Bob, whereas e is public knowledge.
- Bob generates the (e, d) pair and publishes e.
- Anybody like Alice can send E(e, x) to Bob.
- Knowing d, Bob can recover x by D(d, E(e, x)) = x.
- The assumptions are complexity-theoretic.
 - It is computationally difficult to compute d from e.
 - It is computationally difficult to compute x from y without knowing d.

^aDiffie and Hellman (1976).

Whitfield Diffie (1944–)

Martin Hellman (1945–)

Complexity Issues

- Given y and x, it is easy to verify whether E(e, x) = y.
- Hence one can always guess an x and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $P \neq NP$.
- But more is needed than $P \neq NP$.
- For instance, it is not sufficient that *D* is hard to compute in the worst case.
- It should be hard in "most" or "average" cases.

One-Way Functions

A function f is a **one-way function** if the following hold.^a

- 1. f is one-to-one.
- 2. For all $x \in \Sigma^*$, $|x|^{1/k} \le |f(x)| \le |x|^k$ for some k > 0.
 - f is said to be **honest**.
- 3. f can be computed in polynomial time.
- 4. f^{-1} cannot be computed in polynomial time.
 - Exhaustive search works, but it is too slow.

^aDiffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe (1985); Young (1983).

Existence of One-Way Functions

- Even if P ≠ NP, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
- Is breaking glass a one-way function?

Candidates of One-Way Functions

- Modular exponentiation $f(x) = g^x \mod p$, where g is a primitive root of p.
 - Discrete logarithm is hard.^a
- The RSA^b function $f(x) = x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.

- Breaking the RSA function is hard.

^aConjectured to be $2^{n^{\epsilon}}$ for some $\epsilon > 0$ in both the worst-case sense and average sense. It is in NP in some sense (Grollmann and Selman (1988)).

^bRivest, Shamir, and Adleman (1978).

Candidates of One-Way Functions (concluded)

- Modular squaring $f(x) = x^2 \mod pq$.
 - Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard—the quadratic residuacity assumption (QRA).^a

^aDue to Gauss.

The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.

– By Lemma 52 (p. 404),

$$\phi(pq) = pq\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right) = pq - p - q + 1. \quad (8)$$

• As $gcd(e, \phi(pq)) = 1$, there is a d such that

 $ed \equiv 1 \mod \phi(pq),$

which can be found by the Euclidean algorithm.

A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes pq and the encryption key e, a number relatively prime to $\phi(pq)$.
 - The encryption function is $y = x^e \mod pq$.
 - Bob calculates $\phi(pq)$ by Eq. (8) (p. 570).
 - Bob then calculates d such that $ed = 1 + k\phi(pq)$ for some $k \in \mathbb{Z}$.
- The decryption function is $y^d \mod pq$.
- It works because $y^d = x^{ed} = x^{1+k\phi(pq)} = x \mod pq$ by the Fermat-Euler theorem when gcd(x, pq) = 1 (p. 414).

The "Security" of the RSA Function

- Factoring pq or calculating d from (e, pq) seems hard.
 See also p. 410.
- Breaking the last bit of RSA is as hard as breaking the RSA.^a
- Recommended RSA key sizes:^b
 - -1024 bits up to 2010.
 - 2048 bits up to 2030.
 - -3072 bits up to 2031 and beyond.

^aAlexi, Chor, Goldreich, and Schnorr (1988). ^bRSA (2003).

The "Security" of the RSA Function (concluded)

- Recall that problem A is "harder than" problem B if solving A results in solving B.
 - Factorization is "harder than" breaking the RSA.
 - Calculating Euler's phi function is "harder than" breaking the RSA.
 - Factorization is "harder than" calculating Euler's phi function (see Lemma 52 on p. 404).
 - So factorization is harder than calculating Euler's phi function, which is harder than breaking the RSA.
- Factorization cannot be NP-hard unless $NP = coNP.^{a}$
- So breaking the RSA is unlikely to imply P = NP. ^aBrassard (1979).

Adi Shamir, Ron Rivest, and Leonard Adleman

