Theory of Computation

Solutions to Homework 1

Problem 1. Two disjoint languages \mathcal{L}_{1} and \mathcal{L}_{2} are called recursively separable if there exists a recursive language \mathcal{R} such that $\mathcal{L}_{1} \cap \mathcal{R}=\emptyset$ and $\mathcal{L}_{2} \subseteq \mathcal{R}$. Suppose \mathcal{L}_{1} and \mathcal{L}_{2} are recursively separable languages. Show that if both \mathcal{L}_{1} and $\overline{\mathcal{L}}_{1} \cup \mathcal{L}_{2}$ are recursively enumerable, then \mathcal{L}_{1} is recursive.

Proof. Without loss of generality, assume \mathcal{L}_{1} and \mathcal{L}_{2} are recursively separable with $\mathcal{L}_{2} \subseteq \mathcal{R}$. Obviously, $\mathcal{L}_{2} \subseteq \overline{\mathcal{L}}_{1}$. Let TM \mathcal{M} accept $\overline{\mathcal{L}}_{1} \cup \mathcal{L}_{2}$. Because $\overline{\mathcal{L}}_{1} \cup \mathcal{L}_{2}=\overline{\mathcal{L}}_{1}$, $\overline{\mathcal{L}}_{1}$ is also accepted by \mathcal{M}, thus recursively enumerable. Using the idea in Lemma 10 on p. 131, it implies that \mathcal{L}_{1} is recursive.

Problem 2. Prove that the subsets of distinct primes form an uncountable set.

Proof. Denote the nth prime as p_{n}. It is easy to show that there is a bijection between \mathbb{N} and primes $f:\{1,2,3,4, \ldots, n, \ldots\} \rightarrow\left\{2,3,5,7, \ldots, p_{n}, \ldots\right\}$. Therefore, primes are countable. Thus the problem is equivalent to asking whether a function g exists such that

$$
g: \mathbb{N} \rightarrow 2^{\mathbb{N}}
$$

is a bijection. Cantor's theory says no such g exists. Hence the subsets of distinct primes do not form a countable set.

