Theory of Computation

Solutions to Homework 1

Problem 1. Two disjoint languages \mathcal{L}_1 and \mathcal{L}_2 are called recursively separable if there exists a recursive language \mathcal{R} such that $\mathcal{L}_1 \cap \mathcal{R} = \emptyset$ and $\mathcal{L}_2 \subseteq \mathcal{R}$. Suppose \mathcal{L}_1 and \mathcal{L}_2 are recursively separable languages. Show that if both \mathcal{L}_1 and $\overline{\mathcal{L}}_1 \cup \mathcal{L}_2$ are recursively enumerable, then \mathcal{L}_1 is recursive.

Proof. Without loss of generality, assume \mathcal{L}_1 and \mathcal{L}_2 are recursively separable with $\mathcal{L}_2 \subseteq \mathcal{R}$. Obviously, $\mathcal{L}_2 \subseteq \overline{\mathcal{L}}_1$. Let TM \mathcal{M} accept $\overline{\mathcal{L}}_1 \cup \mathcal{L}_2$. Because $\overline{\mathcal{L}}_1 \cup \mathcal{L}_2 = \overline{\mathcal{L}}_1$, $\overline{\mathcal{L}}_1$ is also accepted by \mathcal{M} , thus recursively enumerable. Using the idea in Lemma 10 on p. 131, it implies that \mathcal{L}_1 is recursive.

Problem 2. Prove that the subsets of distinct primes form an uncountable set.

Proof. Denote the *n*th prime as p_n . It is easy to show that there is a bijection between \mathbb{N} and primes $f : \{1, 2, 3, 4, \dots, n, \dots\} \rightarrow \{2, 3, 5, 7, \dots, p_n, \dots\}$. Therefore,

primes are countable. Thus the problem is equivalent to asking whether a function g exists such that

$$g: \mathbb{N} \to 2^{\mathbb{N}}$$

is a bijection. Cantor's theory says no such g exists. Hence the subsets of distinct primes do not form a countable set.