More Undecidability

- $H^{*}=\{M: M$ halts on all inputs $\}$.
- Given the question " $M ; x \in H$?" we construct the following machine: ${ }^{\text {a }}$

$$
M_{x}(y): M(x)
$$

- M_{x} halts on all inputs if and only if M halts on x.
- In other words, $M_{x} \in H^{*}$ if and only if $M ; x \in H$.
- So if H^{*} were recursive, H would be recursive, a contradiction.

[^0]
More Undecidability (concluded)

- $\{M ; x$: there is a y such that $M(x)=y\}$.
- $\{M ; x$: the computation M on input x uses all states of $M\}$.
- $\{M ; x ; y: M(x)=y\}$.

Complements of Recursive Languages

Lemma 9 If L is recursive, then so is \bar{L}.

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}.

Recursive and Recursively Enumerable Languages

Lemma $10 L$ is recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and \bar{M} in an interleaved fashion.
- If M accepts, then $x \in L$ and M^{\prime} halts on state "yes."
- If \bar{M} accepts, then $x \notin L$ and M^{\prime} halts on state "no."

A Very Useful Corollary and Its Consequences

Corollary $11 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 10 (p. 131), L is recursive, a contradiction.

Corollary $12 \bar{H}$ is not recursively enumerable.

$R, R E$, and coRE

RE: The set of all recursively enumerable languages.
coRE: The set of all languages whose complements are recursively enumerable (note that coRE is not $\overline{\mathrm{RE}}$).

- $\operatorname{coRE}=\{L: \bar{L} \in \operatorname{RE}\}$.
- $\overline{\mathrm{RE}}=\{L: L \notin \mathrm{RE}\}$.
\mathbf{R} : The set of all recursive languages.

R, RE, and coRE (concluded)

- $\mathrm{R}=\mathrm{RE} \cap \operatorname{coRE}$ (p. 131).
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 120, p. 121, and p. 132).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 132).
- There are languages in neither RE nor coRE.

Undecidability in Logic and Mathematics

- First-order logic is undecidable (answer to Hilbert's (1928) "Entscheidungsproblem"). ${ }^{\text {a }}$
- Natural numbers with addition and multiplication is undecidable. ${ }^{\text {b }}$
- Rational numbers with addition and multiplication is undecidable. ${ }^{\text {c }}$

[^1]
Undecidability in Logic and Mathematics (concluded)

- Natural numbers with addition and equality is decidable and complete. ${ }^{\text {a }}$
- Elementary theory of groups is undecidable. ${ }^{\text {b }}$
${ }^{\text {a }}$ Presburger's Master's thesis (1928), his only work in logic. The direction was suggested by Tarski. Mojz̄esz Presburger (1904-1943) died in a concentration camp during World War II.
${ }^{\mathrm{b}}$ Tarski (1949).

Julia Hall Bowman Robinson (1919-1985)

Alfred Tarski (1901-1983)

Boolean Logic

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do?

- Bertrand Russell (1872-1970), Autobiography, Vol. I

Boolean Logic ${ }^{\text {a }}$

Boolean variables: x_{1}, x_{2}, \ldots.
Literals: $x_{i}, \neg x_{i}$.
Boolean connectives: \vee, \wedge, \neg.
Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_{1} \vee \phi_{2}$ (disjunction), $\phi_{1} \wedge \phi_{2}$ (conjunction).

- $\bigvee_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \vee \phi_{2} \vee \cdots \vee \phi_{n}$.
- $\bigwedge_{i=1}^{n} \phi_{i}$ stands for $\phi_{1} \wedge \phi_{2} \wedge \cdots \wedge \phi_{n}$.

Implications: $\phi_{1} \Rightarrow \phi_{2}$ is a shorthand for $\neg \phi_{1} \vee \phi_{2}$.
Biconditionals: $\phi_{1} \Leftrightarrow \phi_{2}$ is a shorthand for

$$
\left(\phi_{1} \Rightarrow \phi_{2}\right) \wedge\left(\phi_{2} \Rightarrow \phi_{1}\right)
$$

[^2]
Truth Assignments

- A truth assignment T is a mapping from boolean variables to truth values true and false.
- A truth assignment is appropriate to boolean expression ϕ if it defines the truth value for every variable in ϕ.
$-\left\{x_{1}=\right.$ true,$\left.x_{2}=\mathrm{false}\right\}$ is appropriate to $x_{1} \vee x_{2}$.
$-\left\{x_{2}=\right.$ true,$x_{3}=$ false $\}$ is not appropriate to $x_{1} \vee x_{2}$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ.
- ϕ_{1} and ϕ_{2} are equivalent, written

$$
\phi_{1} \equiv \phi_{2},
$$

if for any truth assignment T appropriate to both of them, $T \models \phi_{1}$ if and only if $T \models \phi_{2}$.

Truth Tables

- Suppose ϕ has n boolean variables.
- A truth table contains 2^{n} rows.
- Each row corresponds to one truth assignment of the n variables and records the truth value of ϕ under that truth assignment.
- A truth table can be used to prove if two boolean expressions are equivalent.
- Just check if they give identical truth values under all appropriate truth assignments.

A Truth Table		
p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

De Morgan's ${ }^{\text {a }}$ Laws

- De Morgan's laws say that

$$
\begin{aligned}
\neg\left(\phi_{1} \wedge \phi_{2}\right) & \equiv \neg \phi_{1} \vee \neg \phi_{2} \\
\neg\left(\phi_{1} \vee \phi_{2}\right) & \equiv \neg \phi_{1} \wedge \neg \phi_{2}
\end{aligned}
$$

- Here is a proof of the first law:

ϕ_{1}	ϕ_{2}	$\neg\left(\phi_{1} \wedge \phi_{2}\right)$	$\neg \phi_{1} \vee \neg \phi_{2}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

[^3]
Conjunctive Normal Forms

- A boolean expression ϕ is in conjunctive normal form (CNF) if

$$
\phi=\bigwedge_{i=1}^{n} C_{i}
$$

where each clause C_{i} is the disjunction of zero or more literals. ${ }^{\text {a }}$

- For example,

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

- Convention: An empty CNF is satisfiable, but a CNF containing an empty clause is not.

[^4]
Disjunctive Normal Forms

- A boolean expression ϕ is in disjunctive normal form (DNF) if

$$
\phi=\bigvee_{i=1}^{n} D_{i},
$$

where each implicant D_{i} is the conjunction of one or more literals.

- For example,

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right) .
$$

Any Expression ϕ Can Be Converted into CNFs and DNFs $\phi=x_{j}:$

- This is trivially true.
$\phi=\neg \phi_{1}$ and a CNF is sought:
- Turn ϕ_{1} into a DNF.
- Apply de Morgan's laws to make a CNF for ϕ.
$\phi=\neg \phi_{1}$ and a DNF is sought:
- Turn ϕ_{1} into a CNF.
- Apply de Morgan's laws to make a DNF for ϕ.

Any Expression ϕ Can Be Converted into CNFs and DNFs (continued)

$\phi=\phi_{1} \vee \phi_{2}$ and a DNF is sought:

- Make ϕ_{1} and ϕ_{2} DNFs.
$\phi=\phi_{1} \vee \phi_{2}$ and a CNF is sought:
- Turn ϕ_{1} and ϕ_{2} into CNFs, ${ }^{\text {a }}$

$$
\phi_{1}=\bigwedge_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigwedge_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigwedge_{i=1}^{n_{1}} \bigwedge_{j=1}^{n_{2}}\left(A_{i} \vee B_{j}\right)
$$

${ }^{\text {a }}$ Corrected by Mr. Chun-Jie Yang (R99922150) on November 9, 2010.

Any Expression ϕ Can Be Converted into CNFs and DNFs (concluded)

$\phi=\phi_{1} \wedge \phi_{2}$ and a CNF is sought:

- Make ϕ_{1} and ϕ_{2} CNFs.
$\phi=\phi_{1} \wedge \phi_{2}$ and a DNF is sought:
- Turn ϕ_{1} and ϕ_{2} into DNFs,

$$
\phi_{1}=\bigvee_{i=1}^{n_{1}} A_{i}, \quad \phi_{2}=\bigvee_{j=1}^{n_{2}} B_{j}
$$

- Set

$$
\phi=\bigvee_{i=1}^{n_{1}} \bigvee_{j=1}^{n_{2}}\left(A_{i} \wedge B_{j}\right)
$$

An Example: Turn $\neg((a \wedge y) \vee(z \vee w))$ into a DNF

$$
\begin{array}{cl}
& \neg((a \wedge y) \vee(z \vee w)) \\
\neg(\mathrm{CNF} \stackrel{\mathrm{CNF})}{=} & \neg(((a) \wedge(y)) \vee((z \vee w))) \\
\neg(\mathrm{CNF}) & \neg((a \vee z \vee w) \wedge(y \vee z \vee w)) \\
\text { de Morgan } & \neg(a \vee z \vee w) \vee \neg(y \vee z \vee w) \\
= & (\neg a \wedge \neg z \wedge \neg w) \vee(\neg y \wedge \neg z \wedge \neg w) .
\end{array}
$$

Satisfiability

- A boolean expression ϕ is satisfiable if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is valid or a tautology, ${ }^{\text {a }}$ written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ.
- ϕ is unsatisfiable if and only if ϕ is false under all appropriate truth assignments if and only if $\neg \phi$ is valid.

[^5]
Ludwig Wittgenstein (1889-1951)

Wittgenstein (1922), "Whereof one cannot speak, thereof one must be silent."

SATISFIABILITY (SAT)

- The length of a boolean expression is the length of the string encoding it.
- satisfiability (SAT): Given a CNF ϕ, is it satisfiable?
- Solvable in exponential time on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 87).
- A most important problem in settling the "P $\xlongequal{?} \mathrm{NP}$ " problem (p. 262).

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- UNSAT (SAT COMPLEMENT): Given a boolean expression ϕ, is it unsatisfiable?
- validity: Given a boolean expression ϕ, is it valid?
$-\phi$ is valid if and only if $\neg \phi$ is unsatisfiable.
$-\phi$ and $\neg \phi$ are basically of the same length.
- So Unsat and validity have the same complexity.
- Both are solvable in exponential time on a TM by the truth table method.

Relations among sat, UNSAT, and VALIDITY

- The negation of an unsatisfiable expression is a valid expression.
- None of the three problems-satisfiability, unsatisfiability, validity - are known to be in P.

Boolean Functions

- An n-ary boolean function is a function

$$
f:\{\text { true }, \text { false }\}^{n} \rightarrow\{\text { true }, \mathrm{false}\} .
$$

- It can be represented by a truth table.
- There are $2^{2^{n}}$ such boolean functions.
- We can assign true or false to f under each of the 2^{n} truth assignments.

Boolean Functions (continued)

Assignment	Truth value
1	true or false
2	true or false
\vdots	\vdots
2^{n}	true or false

Boolean Functions (continued)

- A boolean expression expresses a boolean function.
- Think of its truth value under all truth assignments.
- A boolean function expresses a boolean expression.
- $\bigvee_{T \models \phi,}$, literal y_{i} is true in "row" $T\left(y_{1} \wedge \cdots \wedge y_{n}\right)$.
* $y_{1} \wedge \cdots \wedge y_{n}$ is called the minterm over $\left\{x_{1}, \ldots, x_{n}\right\}$ for T.
- The size ${ }^{\mathrm{a}}$ is $\leq n 2^{n} \leq 2^{2 n}$.

[^6]
Boolean Functions (continued)

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

The corresponding boolean expression:

$$
\left(\neg x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{2}\right)
$$

Boolean Functions (concluded)

Corollary 13 Every n-ary boolean function can be expressed by a boolean expression of size $O\left(n 2^{n}\right)$.

- In general, the exponential length in n cannot be avoided (p. 169).
- The size of the truth table is also $O\left(n 2^{n}\right)$.

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0,1 , or 2 .
- Each gate has a sort from

$$
\left\{\text { true }, \text { false }, \vee, \wedge, \neg, x_{1}, x_{2}, \ldots\right\}
$$

Boolean Circuits (concluded)

- Gates with a sort from $\left\{\operatorname{true}, \mathrm{false}, x_{1}, x_{2}, \ldots\right\}$ are the inputs of C and have an indegree of zero.
- The output gate(s) has no outgoing edges.
- A boolean circuit computes a boolean function.
- The same boolean function can be computed by infinitely many boolean circuits.

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:

- Circuits are more economical because of the possibility of sharing.

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

- CIRCUit sat \in NP: Guess a truth assignment and then evaluate the circuit.

CIRCUIT VALUE: The same as CIRCUIT sat except that the circuit has no variable gates.

- Circuit value $\in \mathrm{P}$: Evaluate the circuit from the input gates gradually towards the output gate.

Some Boolean Functions Need Exponential Circuits ${ }^{\text {a }}$

Theorem 14 (Shannon (1949)) For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^{n} /(2 n)$ or fewer gates can compute it.

- There are $2^{2^{n}}$ different n-ary boolean functions (p. 159).
- So it suffices to prove that the number of boolean circuits with $2^{n} /(2 n)$ or fewer gates is less than $2^{2^{n}}$.
${ }^{\text {a }}$ Can be strengthened to "almost all boolean functions ..."

The Proof (concluded)

- There are at most $\left((n+5) \times m^{2}\right)^{m}$ boolean circuits with m or fewer gates (see next page).
- But $\left((n+5) \times m^{2}\right)^{m}<2^{2^{n}}$ when $m=2^{n} /(2 n)$:

$$
\begin{aligned}
& m \log _{2}\left((n+5) \times m^{2}\right) \\
= & 2^{n}\left(1-\frac{\log _{2} \frac{4 n^{2}}{n+5}}{2 n}\right) \\
< & 2^{n}
\end{aligned}
$$

for $n \geq 2$.

Claude Elwood Shannon (1916-2001)

Howard Gardner, "[Shannon's master's thesis is] possibly the most important, and also the most famous, master's thesis of the century."

Comments

- The lower bound $2^{n} /(2 n)$ is rather tight because an upper bound is $n 2^{n}$ (p. 161).
- The proof counted the number of circuits.
- Some circuits may not be valid at all.
- Different circuits may also compute the same function.
- Both are fine because we only need an upper bound on the number of circuits.
- We do not need to consider the outdoing edges because they have been counted as incoming edges.

Relations between Complexity Classes

Proper (Complexity) Functions

- We say that $f: \mathbb{N} \rightarrow \mathbb{N}$ is a proper (complexity) function if the following hold:
- f is nondecreasing.
- There is a k-string TM M_{f} such that

$$
M_{f}(x)=\sqcap^{f(|x|)} \text { for any } x .^{\text {a }}
$$

- M_{f} halts after $O(|x|+f(|x|))$ steps.
- M_{f} uses $O(f(|x|))$ space besides its input x.
- M_{f} 's behavior depends only on $|x|$ not x 's contents.
- M_{f} 's running time is bounded by $f(n)$.
${ }^{\text {a }}$ This point will become clear in Proposition 15 (p. 178).

Examples of Proper Functions

- Most "reasonable" functions are proper: $c,\lceil\log n\rceil$, polynomials of $n, 2^{n}, \sqrt{n}, n$!, etc.
- If f and g are proper, then so are $f+g, f g$, and 2^{g}.
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
- For example, $\operatorname{TIME}(f(n))=\operatorname{TIME}\left(2^{f(n)}\right)$ for some recursive function f (the gap theorem). ${ }^{\text {a }}$
- Only proper functions f will be used in $\operatorname{TIME}(f(n))$, $\operatorname{SPACE}(f(n)), \operatorname{NTIME}(f(n))$, and $\operatorname{NSPACE}(f(n))$.
${ }^{\text {a }}$ Trakhtenbrot (1964); Borodin (1972).

Precise Turing Machines

- A TM M is precise if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
- M halts after precisely $f(n)$ steps, and
- All of its strings are of length precisely $g(n)$ at halting.
* Recall that if M is a TM with input and output, we exclude the first and the last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

Proposition 15 Suppose a $T M^{\mathrm{a}} M$ decides L within time (space) $f(n)$, where f is proper. Then there is a precise TM M^{\prime} which decides L in time $O(n+f(n))$ (space $O(f(n))$, respectively).

- M^{\prime} on input x first simulates the $\mathrm{TM} M_{f}$ associated with the proper function f on x.
- M_{f} 's output of length $f(|x|)$ will serve as a "yardstick" or an "alarm clock."
- $M^{\prime}(x)$ halts when and only when the alarm clock runs out-even if M halts earlier.

[^7]
Important Complexity Classes

- We write expressions like n^{k} to denote the union of all complexity classes, one for each value of k.
- For example,

$$
\operatorname{NTIME}\left(n^{k}\right)=\bigcup_{j>0} \operatorname{NTIME}\left(n^{j}\right)
$$

Important Complexity Classes (concluded)

$$
\begin{aligned}
\mathrm{P} & =\operatorname{TIME}\left(n^{k}\right), \\
\mathrm{NP} & =\operatorname{NTIME}\left(n^{k}\right), \\
\operatorname{PSPACE} & =\operatorname{SPACE}\left(n^{k}\right), \\
\operatorname{NPSPACE} & =\operatorname{NSPACE}\left(n^{k}\right), \\
\mathrm{E} & =\operatorname{TIME}\left(2^{k n}\right), \\
\mathrm{EXP} & =\operatorname{TIME}\left(2^{n^{k}}\right), \\
\mathrm{L} & =\operatorname{SPACE}(\log n), \\
\mathrm{NL} & =\operatorname{NSACE}(\log n) .
\end{aligned}
$$

[^0]: ${ }^{\text {a }}$ Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_{x} ignores its input $y ; x$ is part of M_{x} 's code but not M_{x} 's input.

[^1]: ${ }^{\mathrm{a}}$ Church (1936).
 ${ }^{\text {b }}$ Rosser (1937).
 ${ }^{c}$ Robinson (1948).

[^2]: ${ }^{\text {a }}$ George Boole (1815-1864) in 1847.

[^3]: ${ }^{\text {a }}$ Augustus DeMorgan (1806-1871).

[^4]: ${ }^{\text {a }}$ Improved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

[^5]: ${ }^{\text {a }}$ Wittgenstein (1889-1951) in 1922. Wittgenstein is one of the most important philosophers of all time. "God has arrived," the great economist Keynes (1883-1946) said of him on January 18, 1928. "I met him on the 5:15 train." Russell (1919), "The importance of 'tautology' for a definition of mathematics was pointed out to me by my former pupil Ludwig Wittgenstein, who was working on the problem. I do not know whether he has solved it, or even whether he is alive or dead."

[^6]: ${ }^{\mathrm{a}}$ We count only the literals here.

[^7]: ${ }^{\text {a }}$ It can be deterministic or nondeterministic.

