Theory of Computation

Final Examination on January 11, 2011
Fall Semester, 2010

Problem 1 (25 points) Let A, B be finite nonempty sets, $f: A \times B \rightarrow$ $\{0,1\}$ and $\sum_{y \in B} f(x, y)<|B| /|A|$ for all $x \in A$. Prove the existence of a $y^{*} \in B$ with $\sum_{x \in A} f\left(x, y^{*}\right)=0$. You may want to use the fact

$$
\sum_{x \in A} \sum_{y \in B} f(x, y)=\sum_{y \in B} \sum_{x \in A} f(x, y) .
$$

Problem 2 (25 points) Does IP contain all languages that have uniformly polynomial circuits?

Problem 3 (25 points) Show that if NP \neq coNP, then $\mathrm{P} \neq \mathrm{NP}$.
Problem 4 (25 points) FP is the set of polynomial-time computable functions. GCD, LCM, matrix-matrix multiplication, etc. are in FP. Let \#sAT stand for the problem of calculating the number of satisfying truth assignments to a boolean formula. Show that if $\#$ Sat $\in F P$, then $P=N P$.

