Theory of Computation

Solutions to Homework 4

Problem 1. Let $a, b \in \mathbb{N}$ and p be a prime. Show that $(a+b)^{p}=a^{p}+$ $b^{p} \bmod p$.

Proof. By the binomial expansion,

$$
\begin{equation*}
(a+b)^{p}=\sum_{r=0}^{p}\binom{p}{r} a^{r} b^{p-r} . \tag{1}
\end{equation*}
$$

As p is a prime, $r!(p-r)$! is not a multiple of p for $0<r<p$. But $\binom{p}{r}=p!/(r!(p-r)!)$ is an integer and $p \mid p!$. Hence $\binom{p}{r}$ is a multiple of p for $0<r<p$. Therefore, Eq. (1) gives $(a+b)^{p}=a^{p}+b^{p} \bmod p$.

Problem 2. The permanent of an $n \times n$ integer matrix A is defined as

$$
\operatorname{perm}(A)=\sum_{\pi} \prod_{i=1}^{n} A_{i, \pi(i)} .
$$

Above, π ranges over all permutations of n elements. (It is similar to determinant but without the sign.) Show that if A is the adjacency matrix (hence a $0 / 1$ matrix) of a bipartitle graph G, then $\operatorname{perm}(A)$ equals the number of perfect matchings of G.
Proof. Given a bipartite graph $G=(I, J, E)$ that satisfies
(1) $I \cap J=\{ \}$.
(2) For all $(i, j) \in E, i \in I \wedge j \in J$.
(3) $|I|=|J|=n^{1}$.

Its adjancecy matrix A can be constructed as follows:

- A row of A is indexed by a vertex of I.
- A column of A is indexed by a vertex of J.
- For $A_{i j} \in A$,

$$
a_{i j}=\left\{\begin{array}{l}
0, \text { iff }(i, j) \notin E, \\
1, \text { iff }(i, j) \in E .
\end{array}\right.
$$

If there exists K perfect matching in G, then there also exists K corresponding permutation ${ }^{2}$ functions

$$
\pi_{1}: I \rightarrow J, \quad \pi_{2}: I \rightarrow J, \quad \ldots, \quad \pi_{K}: I \rightarrow J
$$

[^0]such that $\left(i, \pi_{k}(i)\right) \in E$ for all $i \in I$ and $k \in K$. It also implies that
\[

\prod_{i=1}^{n} A_{i, \pi(i)}= $$
\begin{cases}1, & \pi \in\left\{\pi_{1}, \pi_{2}, \cdots, \pi_{K}\right\} \Leftrightarrow A_{1, \pi(1)}=A_{2, \pi(2)}=\cdots=A_{n, \pi(n)}=1 \\ 0, & \pi \notin\left\{\pi_{1}, \pi_{2}, \cdots, \pi_{K}\right\} .\end{cases}
$$
\]

Thus, we have $\sum_{\pi} \prod_{i=1}^{n} A_{i, \pi(i)}=K=\langle \#$ of perfect matchings in $G\rangle$.

[^0]: ${ }^{1}$ If not, its adjancecy matrix won't be a square one.
 ${ }^{2}$ Bijective, i.e., "1-1 and onto."

