Theory of Computation

Homework 4

Due: 2010/12/14
Problem 1. Let $a, b \in \mathbb{N}$ and p be a prime. Show that $(a+b)^{p}=a^{p}+$ $b^{p} \bmod p$.

Problem 2. The permanent of an $n \times n$ integer matrix A is defined as

$$
\operatorname{perm}(A)=\sum_{\pi} \prod_{i=1}^{n} A_{i, \pi(i)} .
$$

Above, π ranges over all permutations of n elements. (It is similar to determinant but without the sign.) Show that if A is the adjacency matrix (hence a $0 / 1$ matrix) of a bipartitle graph G, then $\operatorname{perm}(A)$ equals the number of perfect matchings of G.

