Theory of Computation

Homework 2 Due: 2010/10/26

Problem 1. Derive a disjunctive normal form of

 $(x_1 \lor y_1) \land (x_2 \lor y_2) \land \dots \land (x_n \lor y_n).$

Problem 2. Prove that $NP \neq SPACE(n)$.

(Hint: You don't need to show $\mathbf{NP} \subsetneq \mathbf{SPACE}(n)$ or $\mathbf{SPACE}(n) \subsetneq \mathbf{NP}$ since they are open questions so far as we know. All you need to do is to prove these two sets are **unequal**.

A log-space reduction from language L_1 to language L_2 is a function R which can be computed by a deterministic log-space Turing machine such that $x \in L_1$ iff $R(x) \in L_2$. In the proof, you can treat log space and polynomial time interchangeably. So as long as your reduction R runs in polynomial time, it is fine.

A complexity class **C** is closed under log-space reduction if for any logspace reduction R from L_1 to L_2 , $L_1 \in \mathbf{C}$ if $L_2 \in \mathbf{C}$. Show first that **NP** is closed under log-space reduction. Then show that **SPACE**(n) is not closed under log-space reduction by the Space Hierarchy Theorem (the version in the textbook is sufficient). For this, suppose $L_1 \in \mathbf{SPACE}(n^2)$ but $L_1 \notin \mathbf{SPACE}(n)$. Now ask yourself what is the space complexity of deciding " $x \in L_2$?", where L_2 consists of those strings $x \in L_1$ padded with $n^2 - n$ redundant symbols after x with |x| = n.)