
Complete Problems and Complexity Classes

Proposition 26 Let C′ and C be two complexity classes
such that C′ ⊆ C. Assume C′ is closed under reductions and
L is C-complete. Then C = C′ if and only if L ∈ C′.
• Suppose L ∈ C′ first.

• Every language A ∈ C reduces to L ∈ C′.
• Because C′ is closed under reductions, A ∈ C′.
• Hence C ⊆ C′.
• As C′ ⊆ C, we conclude that C = C′.
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The Proof (concluded)

• On the other hand, suppose C = C′.
• As L is C-complete, L ∈ C.
• Thus, trivially, L ∈ C′.
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Two Important Corollaries

Proposition 26 implies the following.

Corollary 27 P = NP if and only if an NP-complete
problem in P.

Corollary 28 L = P if and only if a P-complete problem is
in L.
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Complete Problems and Complexity Classes

Proposition 29 Let C′ and C be two complexity classes
closed under reductions. If L is complete for both C and C′,
then C = C′.
• All languages L ∈ C reduce to L ∈ C′.
• Since C′ is closed under reductions, L ∈ C′.
• Hence C ⊆ C′.
• The proof for C′ ⊆ C is symmetric.
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Table of Computation

• Let M = (K, Σ, δ, s) be a single-string polynomial-time
deterministic TM deciding L.

• Its computation on input x can be thought of as a
|x |k × |x |k table, where |x |k is the time bound.

– It is a sequence of configurations.

• Rows correspond to time steps 0 to |x |k − 1.

• Columns are positions in the string of M .

• The (i, j)th table entry represents the contents of
position j of the string after i steps of computation.
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Some Conventions To Simplify the Table

• M halts after at most |x |k − 2 steps.

– The string length hence never exceeds |x |k.

• Assume a large enough k to make it true for |x | ≥ 2.

• Pad the table with
⊔

s so that each row has length |x |k.

– The computation will never reach the right end of
the table for lack of time.

• If the cursor scans the jth position at time i when M is
at state q and the symbol is σ, then the (i, j)th entry is
a new symbol σq.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 247



Some Conventions To Simplify the Table (continued)

• If q is “yes” or “no,” simply use “yes” or “no” instead of
σq.

• Modify M so that the cursor starts not at ¤ but at the
first symbol of the input.

• The cursor never visits the leftmost ¤ by telescoping
two moves of M each time the cursor is about to move
to the leftmost ¤.

• So the first symbol in every row is a ¤ and not a ¤q.
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Some Conventions To Simplify the Table (concluded)

• Suppose M has halted before its time bound of |x |k, so
that “yes” or “no” appears at a row before the last.

• Then all subsequent rows will be identical to that row.

• M accepts x if and only if the (|x |k − 1, j)th entry is
“yes” for some position j.
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Comments

• Each row is essentially a configuration.

• If the input x = 010001, then the first row is

| x |k︷ ︸︸ ︷
¤0s10001

⊔ ⊔
· · ·

⊔

• A typical row may look like

| x |k︷ ︸︸ ︷
¤10100q01110100

⊔ ⊔
· · ·

⊔
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Comments (concluded)

• The last rows must look like

| x |k︷ ︸︸ ︷
¤ · · · “yes” · · ·

⊔
or

| x |k︷ ︸︸ ︷
¤ · · · “no” · · ·

⊔

• Three out of the table’s 4 borders are known:

#��D��E��F��G��H��I���#

#

�

�
# �# �
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A P-Complete Problem

Theorem 30 (Ladner (1975)) circuit value is
P-complete.

• It is easy to see that circuit value ∈ P.

• For any L ∈ P, we will construct a reduction R from L

to circuit value.

• Given any input x, R(x) is a variable-free circuit such
that x ∈ L if and only if R(x) evaluates to true.

• Let M decide L in time nk.

• Let T be the computation table of M on x.
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The Proof (continued)

• When i = 0, or j = 0, or j = |x |k − 1, then the value of
Tij is known.

– The jth symbol of x or
⊔

, a ¤, and a
⊔

, respectively.

– Recall that three out of T ’s 4 borders are known.
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The Proof (continued)

• Consider other entries Tij .

• Tij depends on only Ti−1,j−1, Ti−1,j , and Ti−1,j+1.

Ti−1,j−1 Ti−1,j Ti−1,j+1

Tij

• Let Γ denote the set of all symbols that can appear on
the table: Γ = Σ ∪ {σq : σ ∈ Σ, q ∈ K}.

• Encode each symbol of Γ as an m-bit number, wherea

m = dlog2 |Γ |e.
aState assignment in circuit design.
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The Proof (continued)

• Let the m-bit binary string Sij1Sij2 · · ·Sijm encode Tij .

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries
Sij`, where

0 ≤ i ≤ nk − 1,

0 ≤ j ≤ nk − 1,

1 ≤ ` ≤ m.
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The Proof (continued)

• Each bit Sij` depends on only 3m other bits:

Ti−1,j−1: Si−1,j−1,1 Si−1,j−1,2 · · · Si−1,j−1,m

Ti−1,j : Si−1,j,1 Si−1,j,2 · · · Si−1,j,m

Ti−1,j+1: Si−1,j+1,1 Si−1,j+1,2 · · · Si−1,j+1,m

• There is a boolean function F` with 3m inputs such that

Sij` = F`(Si−1,j−1,1, Si−1,j−1,2, . . . , Si−1,j−1,m,

Si−1,j,1, Si−1,j,2, . . . , Si−1,j,m,

Si−1,j+1,1, Si−1,j+1,2, . . . , Si−1,j+1,m),

where for all i, j > 0 and 1 ≤ ` ≤ m.
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The Proof (continued)

• These Fi’s depend only on M ’s specification, not on x.

• Their sizes are fixed.

• These boolean functions can be turned into boolean
circuits.

• Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.

– Schematically, C(Ti−1,j−1, Ti−1,j , Ti−1,j+1) = Tij .a

aC is like an ASIC (application-specific IC) chip.
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Circuit C

T
i -
 1
,j -
 1


T
ij


T
i - 
1
,j + 
1
T
i -
 1
,j


C
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The Proof (concluded)

• A copy of circuit C is placed at each entry of the table.

– Exceptions are the top row and the two extreme
columns.

• R(x) consists of (|x |k − 1)(|x |k − 2) copies of circuit C.

• Without loss of generality, assume the output
“yes”/“no” appear at position (|x |k − 1, 1).

• Encode “yes” as 1 and “no” as 0.
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The Computation Tableau and R(x)

#��D��E��F��G��H��I���
#
#

�
�

& & & & & &

& & & & & &

& & & & & &
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A Corollary

The construction in the above proof yields the following,
more general result.

Corollary 31 If L ∈ TIME(T (n)), then a circuit with
O(T 2(n)) gates can decide if x ∈ L for |x | = n.
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monotone circuit value

• A monotone boolean circuit’s output cannot change
from true to false when one input changes from false to
true.

• Monotone boolean circuits are hence less expressive than
general circuits.

– They can compute only monotone boolean functions.

• Monotone circuits do not contain ¬ gates (prove it).

• monotone circuit value is circuit value applied
to monotone circuits.
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monotone circuit value Is P-Complete

Despite their limitations, monotone circuit value is as
hard as circuit value.

Corollary 32 monotone circuit value is P-complete.

• Given any general circuit, we can “move the ¬’s
downwards” using de Morgan’s laws. (Why?)
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Cook’s Theorem: the First NP-Complete Problem

Theorem 33 (Cook (1971)) sat is NP-complete.

• sat ∈ NP (p. 90).

• circuit sat reduces to sat (p. 231).

• Now we only need to show that all languages in NP can
be reduced to circuit sat.
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The Proof (continued)

• Let single-string NTM M decide L ∈ NP in time nk.

• Assume M has exactly two nondeterministic choices at
each step: choices 0 and 1.

• For each input x, we construct circuit R(x) such that
x ∈ L if and only if R(x) is satisfiable.

• A sequence of nondeterministic choices is a bit string

B = (c1, c2, . . . , c| x |k−1) ∈ {0, 1}| x |k−1.

• Once B is given, the computation is deterministic.
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The Proof (continued)

• Each choice of B results in a deterministic
polynomial-time computation.

• So each choice of B results in a table like the one on
p. 260.

• Each circuit C at time i has an extra binary input c

corresponding to the nondeterministic choice:
C(Ti−1,j−1, Ti−1,j , Ti−1,j+1, c) = Tij .

C


c
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The Computation Tableau for NTMs and R(x)

#��D��E��F��G��H��I���
#
#

�
�

& & & & & &

& & & & & &

& & & & & &

F��F��F�
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The Proof (concluded)

• The overall circuit R(x) (on p. 267) is satisfiable if there
is a truth assignment B such that the computation table
accepts.

• This happens if and only if M accepts x, i.e., x ∈ L.
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Stephen Arthur Cooka (1939–)

Richard Karp, “It is to our everlast-
ing shame that we were unable to
persuade the math department [of
UC-Berkeley] to give him tenure.”

aTuring Award (1982).
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NP-Complete Problems
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Wir müssen wissen, wir werden wissen.
(We must know, we shall know.)

— David Hilbert (1900)

I predict that scientists will one day adopt a new
principle: “NP-complete problems are hard.”
That is, solving those problems efficiently is
impossible on any device that could be built

in the real world, whatever the final laws
of physics turn out to be.
— Scott Aaronson (2008)
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Two Notions

• Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings.

• R is called polynomially decidable if

{x; y : (x, y) ∈ R}

is in P.

• R is said to be polynomially balanced if (x, y) ∈ R

implies |y| ≤ |x |k for some k ≥ 1.
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An Alternative Characterization of NP

Proposition 34 (Edmonds (1965)) Let L ⊆ Σ∗ be a
language. Then L ∈ NP if and only if there is a polynomially
decidable and polynomially balanced relation R such that

L = {x : ∃y (x, y) ∈ R}.

• Suppose such an R exists.

• L can be decided by this NTM:

– On input x, the NTM guesses a y of length ≤ |x |k.

– It then tests if (x, y) ∈ R in polynomial time.

– It returns “yes” if the test is positive.
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The Proof (concluded)

• Now suppose L ∈ NP.

• NTM N decides L in time |x |k.

• Define R as follows: (x, y) ∈ R if and only if y is the
encoding of an accepting computation of N on input x.

• R is polynomially balanced as N is polynomially
bounded.

• R is polynomially decidable because it can be efficiently
verified by consulting N ’s transition function.

• Finally L = {x : (x, y) ∈ R for some y} because N

decides L.
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Jack Edmonds

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 275



Comments

• Any “yes” instance x of an NP problem has at least one
succinct certificate or polynomial witness y.

• “No” instances have none.

• Certificates are short and easy to verify.

– An alleged satisfying truth assignment for sat, an
alleged Hamiltonian path for hamiltonian path,
etc.

• Certificates may be hard to generate,a but verification
must be easy.

• NP is the class of easy-to-verify (i.e., in P) problems.
aUnless P equals NP.
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Levin Reduction and Parsimonious Reductions

• The reduction R in Cook’s theorem (p. 264) is such that

– Each satisfying truth assignment for circuit R(x)
corresponds to an accepting computation path for
M(x).

• It actually yields an efficient way to transform a
certificate for x to a satisfying assignment for R(x), and
vice versa.

• A reduction with this property is called a Levin
reduction.a

aLevin is the co-inventor of NP-completeness, in 1973.
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Leonid Levin (1948–)

Leonid Levin, “Mathematicians of-
ten think that historical evidence
is that NP is exponential. Histori-
cal evidence is quite strongly in the
other direction.”
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Levin Reduction and Parsimonious Reductions
(concluded)

• Furthermore, the proof gives a one-to-one and onto
mapping between the set of certificates for x and the set
of satisfying assignments for R(x).

• So the number of satisfying truth assignments for R(x)
equals that of M(x)’s accepting computation paths.

• This kind of reduction is called parsimonious.

• We will loosen the requirement for parsimonious
reduction: It runs in deterministic polynomial time.
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You Have an NP-Complete Problem (for Your Thesis)

• From Propositions 26 (p. 242) and Proposition 29
(p. 245), it is the least likely to be in P.

• Your options are:

– Approximations.

– Special cases.

– Average performance.

– Randomized algorithms.

– Exponential-time algorithms that work well in
practice.

– “Heuristics” (and pray that it works for your thesis).
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I thought NP-completeness was an interesting idea:
I didn’t quite realize its potential impact.

— Stephen Cook, in Shasha & Lazere (1998)

I was indeed surprised by Karp’s work
since I did not expect so many

wonderful problems were NP-complete.
— Leonid Levin, in Shasha & Lazere (1998)
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3sat

• k-sat, where k ∈ Z+, is the special case of sat.

• The formula is in CNF and all clauses have exactly k

literals (repetition of literals is allowed).

• For example,

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3).
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3sat Is NP-Complete

• Recall Cook’s Theorem (p. 264) and the reduction of
circuit sat to sat (p. 231).

• The resulting CNF has at most 3 literals for each clause.

– This accidentally shows that 3sat where each clause
has at most 3 literals is NP-complete.

• Finally, duplicate one literal once or twice to make it a
3sat formula.

• Note: The overall reduction remains parsimonious.
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The Satisfiability of Random 3sat Expressions

• Consider a random 3sat expressions φ with n variables
and cn clauses.

• Each clause is chosen independently and uniformly from
the set of all possible clauses.

• Intuitively, the larger the c, the less likely φ is satisfiable
as more constraints are added.

• Indeed, there is a cn such that for c < cn(1− ε), φ is
satisfiable almost surely, and for c > cn(1 + ε), φ is
unsatisfiable almost surely.a

aFriedgut and Bourgain (1999). As of 2006, 3.52 < cn < 4.596.
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Another Variant of 3sat

Proposition 35 3sat is NP-complete for expressions in
which each variable is restricted to appear at most three
times, and each literal at most twice. (3sat here requires
only that each clause has at most 3 literals.)

• Consider a general 3sat expression in which x appears k

times.

• Replace the first occurrence of x by x1, the second by
x2, and so on, where x1, x2, . . . , xk are k new variables.
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The Proof (concluded)

• Add (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xk ∨ x1) to the
expression.

– It is logically equivalent to

x1 ⇒ x2 ⇒ · · · ⇒ xk ⇒ x1.

– Note that each clause above has only 2 literals.

• The resulting equivalent expression satisfies the
condition for x.
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An Example

• Suppose we are given the following 3sat expression

· · · (¬x ∨ w ∨ g) ∧ · · · ∧ (x ∨ y ∨ z) · · · .

• The transformed expression is

· · · (¬x1∨w∨g)∧· · ·∧(x2∨y∨z) · · · (¬x1∨x2)∧(¬x2∨x1).

– Variable x1 appears 3 times.

– Literal x1 appears once.

– Literal ¬x1 appears 2 times.
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2sat Is in NL ⊆ P

• Let φ be an instance of 2sat: Each clause has 2 literals.

• NL is a subset of P (p. 201).

• By Eq. (2) on p. 211, coNL equals NL.

• We need to show only that recognizing unsatisfiable
expressions is in NL.

• See the textbook for proof.
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Generalized 2sat: max2sat

• Consider a 2sat expression.

• Let K ∈ N.

• max2sat is the problem of whether there is a truth
assignment that satisfies at least K of the clauses.

• max2sat becomes 2sat when K equals the number of
clauses.

• max2sat is an optimization problem.

• max2sat ∈ NP: Guess a truth assignment and verify
the count.
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max2sat Is NP-Completea

• Consider the following 10 clauses:

(x) ∧ (y) ∧ (z) ∧ (w)

(¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (¬z ∨ ¬x)

(x ∨ ¬w) ∧ (y ∨ ¬w) ∧ (z ∨ ¬w)

• Let the 2sat formula r(x, y, z, w) represent the
conjunction of these clauses.

• The clauses are symmetric with respect to x, y, and z.

• How many clauses can we satisfy?
aGarey, Johnson, and Stockmeyer (1976).
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The Proof (continued)

All of x, y, z are true: By setting w to true, we satisfy
4 + 0 + 3 = 7 clauses, whereas by setting w to false, we
satisfy only 3 + 0 + 3 = 6 clauses.

Two of x, y, z are true: By setting w to true, we satisfy
3 + 2 + 2 = 7 clauses, whereas by setting w to false, we
satisfy 2 + 2 + 3 = 7 clauses.
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The Proof (continued)

One of x, y, z is true: By setting w to false, we satisfy
1 + 3 + 3 = 7 clauses, whereas by setting w to true, we
satisfy only 2 + 3 + 1 = 6 clauses.

None of x, y, z is true: By setting w to false, we satisfy
0 + 3 + 3 = 6 clauses, whereas by setting w to true, we
satisfy only 1 + 3 + 0 = 4 clauses.
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The Proof (continued)

• Any truth assignment that satisfies x ∨ y ∨ z can be
extended to satisfy 7 of the 10 clauses and no more.

• Any other truth assignment can be extended to satisfy
only 6 of them.

• The reduction from 3sat φ to max2sat R(φ):

– For each clause Ci = (α ∨ β ∨ γ) of φ, add group
r(α, β, γ, wi) to R(φ).

• If φ has m clauses, then R(φ) has 10m clauses.

• Finally, set K = 7m.
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The Proof (concluded)

• We now show that K clauses of R(φ) can be satisfied if
and only if φ is satisfiable.

• Suppose 7m clauses of R(φ) can be satisfied.

– 7 clauses must be satisfied in each group because
each group can have at most 7 clauses satisfied.

– Hence all clauses of φ must be satisfied.

• Suppose all clauses of φ are satisfied.

– Each group can set its wi appropriately to have 7
clauses satisfied.
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Michael R. Garey (1945–)
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David S. Johnson (1945–)
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Larry Stockmeyer (1948–2004)
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