Theory of Computation

Homework 1

Due: 2010/10/05
Problem 1. Consider a deterministic k-tape Turing machine with q states and σ alphabetic symbols. Suppose this Turing machine halts after using a maximum of h cells on each of the tapes. What is the maximum running time?

Problem 2. Cantor's theorem says that the set of all subsets of \mathbb{N} (i.e. $2^{\mathbb{N}}$) is infinite and not countable. But consider the following counterargument. Let $p_{1}<p_{2}<p_{3}<\cdots$ be all the prime numbers. Define the following function from $2^{\mathbb{N}}$ to \mathbb{N} :

$$
f(X)=p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} \ldots,
$$

where $X=\left\{n_{1}, n_{2}, n_{3}, \ldots\right\}$ and $n_{1}<n_{2}<n_{3}<\cdots$. Clearly, f maps every subset of \mathbb{N} into some number of \mathbb{N}. So, $2^{\mathbb{N}}$ is countable, contradicting Cantor's theorem. What is wrong with the argument?

