Theory of Computation

Homework 1 Due: 2010/10/05

Problem 1. Consider a deterministic k-tape Turing machine with q states and σ alphabetic symbols. Suppose this Turing machine halts after using a maximum of h cells on each of the tapes. What is the maximum running time?

Problem 2. Cantor's theorem says that the set of all subsets of \mathbb{N} (i.e. $2^{\mathbb{N}}$) is infinite and not countable. But consider the following counterargument. Let $p_1 < p_2 < p_3 < \cdots$ be all the prime numbers. Define the following function from $2^{\mathbb{N}}$ to \mathbb{N} :

$$f(X) = p_1^{n_1} p_2^{n_2} p_3^{n_3} \dots,$$

where $X = \{n_1, n_2, n_3, ...\}$ and $n_1 < n_2 < n_3 < \cdots$. Clearly, f maps every subset of \mathbb{N} into some number of \mathbb{N} . So, $2^{\mathbb{N}}$ is countable, contradicting Cantor's theorem. What is wrong with the argument?