A Second Corollary of Cantor's Theorem

Corollary 8 The set of all functions on \mathbb{N} is not countable.

- It suffices to prove it for functions from \mathbb{N} to $\{0,1\}$.
- Every such function $f: \mathbb{N} \rightarrow\{0,1\}$ determines a set

$$
\{n: f(n)=1\} \subseteq \mathbb{N}
$$

and vice versa.

- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $\left|2^{\mathbb{N}}\right|$.
- Corollary 7 (p. 116) then implies the claim.

Existence of Uncomputable Problems

- Every program is a finite sequence of 0 s and 1 s , thus a nonnegative integer. ${ }^{\text {a }}$
- Hence every program corresponds to some integer.
- The set of programs is countable.

[^0]
Existence of Uncomputable Problems (concluded)

- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 8 (p. 117).
- So there are functions for which no programs exist. ${ }^{\text {a }}$

[^1]
Universal Turing Machine ${ }^{\text {a }}$

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
- Both M and x are over the alphabet of U.
- U simulates M on x so that

$$
U(M ; x)=M(x) .
$$

- U is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

[^2]
The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We knew undecidable problems exist (p. 118).
- We now define a concrete undecidable problem, the halting problem:

$$
H=\{M ; x: M(x) \neq \nearrow\} .
$$

- Does M halt on input x ?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If $M(x)$ diverges, so does U.
- This TM accepts H.
- E.g., membership of x in a recursively enumerative language accepted by M can be answered by asking

$$
M ; x \in H ?
$$

H Is Not Recursive

- Suppose there is a TM M_{H} that decides H.
- Consider the program $D(M)$ that calls M_{H} :

1: if $M_{H}(M ; M)=$ "yes" then
2: \quad; \{Writing an infinite loop is easy, right? $\}$
3: else
4: "yes";
5: end if

- Consider $D(D)$:
$-D(D)=\nearrow \Rightarrow M_{H}(D ; D)=$ "yes" $\Rightarrow D ; D \in H \Rightarrow$ $D(D) \neq \nearrow$, a contradiction.
$-D(D)="$ yes" $\Rightarrow M_{H}(D ; D)="$ no" $\Rightarrow D ; D \notin H \Rightarrow$ $D(D)=\nearrow$, a contradiction.

Comments

- Two levels of interpretations of M :
- A sequence of 0 s and 1 s (data).
- An encoding of instructions (programs).
- There are no paradoxes.
- Concepts should be familiar to computer scientists.
- Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

Self-Loop Paradoxes

Cantor's Paradox (1899): Let T be the set of all sets. ${ }^{\text {a }}$

- Then $2^{T} \subseteq T$ because 2^{T} is a set.
- But we know $\left|2^{T}\right|>|T|$ (p. 116)!
- We got a "contradiction."
- So what gives?
- Are we willing to give up Cantor's theorem?
- If not, what is a set?

[^3]
Self-Loop Paradoxes (continued)

Russell's Paradox (1901): Consider $R=\{A: A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction."

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."
Hypochondriac: a patient (like Gödel) with imaginary symptoms and ailments.

Self-Loop Paradoxes (concluded)

Sharon Stone in The Specialist (1994): "I'm not a woman you can trust."

Spin City (1996-2002): "I am not gay, but my boyfriend is."

Numbers 12:3, Old Testament: "Moses was the most humble person in all the world [\cdots]" (attributed to Moses).

Bertrand Russell (1872-1970)

Reductions in Proving Undecidability

- Suppose we are asked to prove L is undecidable.
- Language H is known to be undecidable.
- We then try to find a computable transformation (called reduction) R such that ${ }^{\text {a }}$

$$
\forall x\{R(x) \in L \text { if and only if } x \in H\}
$$

- We can answer " $x \in H$?" for any x by asking " $R(x) \in L$?" instead.
- This suffices to prove that L is undecidable.
${ }^{\text {a }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

More Undecidability

- $H^{*}=\{M: M$ halts on all inputs $\}$.
- Given the question " $M ; x \in H$?" we construct the following machine: ${ }^{\text {a }}$

$$
M_{x}(y): M(x)
$$

- M_{x} halts on all inputs if and only if M halts on x.
- In other words, $M_{x} \in H^{*}$ if and only if $M ; x \in H$.
- So if H^{*} were recursive, H would be recursive, a contradiction.

[^4]
More Undecidability (concluded)

- $\{M ; x$: there is a y such that $M(x)=y\}$.
- $\{M ; x$: the computation M on input x uses all states of $M\}$.
- $\{M ; x ; y: M(x)=y\}$.

Complements of Recursive Languages

Lemma 9 If L is recursive, then so is \bar{L}.

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}.

Recursive and Recursively Enumerable Languages

Lemma $10 L$ is recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and \bar{M} in an interleaved fashion.
- If M accepts, then $x \in L$ and M^{\prime} halts on state "yes."
- If \bar{M} accepts, then $x \notin L$ and M^{\prime} halts on state "no."

A Very Useful Corollary and Its Consequences

Corollary $11 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 10 (p. 132), L is recursive, a contradiction.

Corollary $12 \bar{H}$ is not recursively enumerable.

$R, R E$, and coRE

RE: The set of all recursively enumerable languages.
coRE: The set of all languages whose complements are recursively enumerable (note that coRE is not $\overline{\mathrm{RE}}$).

- $\operatorname{coRE}=\{L: \bar{L} \in \operatorname{RE}\}$.
- $\overline{\mathrm{RE}}=\{L: L \notin \mathrm{RE}\}$.
\mathbf{R} : The set of all recursive languages.

R, RE, and coRE (concluded)

- $\mathrm{R}=\mathrm{RE} \cap \operatorname{coRE}(\mathrm{p} .132)$.
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 121, p. 122, and p. 133).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 133).
- There are languages in neither RE nor coRE.

[^0]: ${ }^{\text {a }}$ Use lexicographic order or other tricks to prevent two binary strings from being mapped to the same integer. Contributed by Mr. Yu-Chih Tung (R98922167) on October 5, 2010.

[^1]: ${ }^{\text {a }}$ As a nondeterministic program may not be said to compute a function, we consider only deterministic programs here. Contributed by Mr. Patrick Will (A99725101) on October 5, 2010.

[^2]: a Turing (1936).

[^3]: ${ }^{\text {a }}$ Recall this ontological argument for the existence of God by St Anselm (-1109) in the 11th century: If something is possible but is not part of God, then God is not the greatest possible object of thought, a contradiction.

[^4]: ${ }^{\text {a }}$ Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_{x} ignores its input $y ; x$ is part of M_{x} 's code but not M_{x} 's input.

