
A Second Corollary of Cantor’s Theorem

Corollary 8 The set of all functions on N is not countable.

• It suffices to prove it for functions from N to {0, 1}.
• Every such function f : N→ {0, 1} determines a set

{n : f(n) = 1} ⊆ N

and vice versa.

• So the set of functions from N to {0, 1} has cardinality
| 2N |.

• Corollary 7 (p. 116) then implies the claim.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 117

Existence of Uncomputable Problems

• Every program is a finite sequence of 0s and 1s, thus a
nonnegative integer.a

• Hence every program corresponds to some integer.

• The set of programs is countable.
aUse lexicographic order or other tricks to prevent two binary strings

from being mapped to the same integer. Contributed by Mr. Yu-Chih

Tung (R98922167) on October 5, 2010.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 118

Existence of Uncomputable Problems (concluded)

• A function is a mapping from integers to integers.

• The set of functions is not countable by Corollary 8
(p. 117).

• So there are functions for which no programs exist.a

aAs a nondeterministic program may not be said to compute a func-

tion, we consider only deterministic programs here. Contributed by Mr.

Patrick Will (A99725101) on October 5, 2010.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 119

Universal Turing Machinea

• A universal Turing machine U interprets the input
as the description of a TM M concatenated with the
description of an input to that machine, x.

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid
machine code, or a Java Virtual machine, which
executes any valid bytecode.

aTuring (1936).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 120

The Halting Problem

• Undecidable problems are problems that have no
algorithms or languages that are not recursive.

• We knew undecidable problems exist (p. 118).

• We now define a concrete undecidable problem, the
halting problem:

H = {M ; x : M(x) 6=↗}.

– Does M halt on input x?

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 121

H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.

– E.g., membership of x in a recursively enumerative
language accepted by M can be answered by asking

M ; x ∈ H?

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 122

H Is Not Recursive

• Suppose there is a TM MH that decides H.

• Consider the program D(M) that calls MH :
1: if MH(M ; M) = “yes” then

2: ↗; {Writing an infinite loop is easy, right?}
3: else

4: “yes”;

5: end if

• Consider D(D):

– D(D) =↗⇒ MH(D; D) = “yes” ⇒ D; D ∈ H ⇒
D(D) 6=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D; D) = “no” ⇒ D; D 6∈ H ⇒
D(D) =↗, a contradiction.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 123

Comments

• Two levels of interpretations of M :

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes.

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter
to a Lisp interpreter, etc.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 124

Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.a

• Then 2T ⊆ T because 2T is a set.

• But we know | 2T | > |T | (p. 116)!

• We got a “contradiction.”

• So what gives?

• Are we willing to give up Cantor’s theorem?

• If not, what is a set?
aRecall this ontological argument for the existence of God by

St Anselm (–1109) in the 11th century: If something is possible but is

not part of God, then God is not the greatest possible object of thought,

a contradiction.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 125

Self-Loop Paradoxes (continued)

Russell’s Paradox (1901): Consider R = {A : A 6∈ A}.
• If R ∈ R, then R 6∈ R by definition.

• If R 6∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient (like Gödel) with imaginary
symptoms and ailments.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 126

Self-Loop Paradoxes (concluded)

Sharon Stone in The Specialist (1994): “I’m not a
woman you can trust.”

Spin City (1996–2002): “I am not gay, but my boyfriend
is.”

Numbers 12:3, Old Testament: “Moses was the most
humble person in all the world [· · ·]” (attributed to
Moses).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 127

Bertrand Russell (1872–1970)

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 128

Reductions in Proving Undecidability

• Suppose we are asked to prove L is undecidable.

• Language H is known to be undecidable.

• We then try to find a computable transformation (called
reduction) R such thata

∀x {R(x) ∈ L if and only if x ∈ H}.

• We can answer “x ∈ H?” for any x by asking
“R(x) ∈ L?” instead.

• This suffices to prove that L is undecidable.
aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 129

More Undecidability

• H∗ = {M : M halts on all inputs}.
– Given the question “M ; x ∈ H?” we construct the

following machine:a

Mx(y) : M(x).

– Mx halts on all inputs if and only if M halts on x.

– In other words, Mx ∈ H∗ if and only if M ;x ∈ H.

– So if H∗ were recursive, H would be recursive, a
contradiction.

aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 130

More Undecidability (concluded)

• {M ; x : there is a y such that M(x) = y}.
• {M ; x : the computation M on input x uses all states of M}.

• {M ; x; y : M(x) = y}.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 131

Complements of Recursive Languages

Lemma 9 If L is recursive, then so is L̄.

• Let L be decided by M (which is deterministic).

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 132

Recursive and Recursively Enumerable Languages

Lemma 10 L is recursive if and only if both L and L̄ are
recursively enumerable.

• Suppose both L and L̄ are recursively enumerable,
accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then x ∈ L and M ′ halts on state “yes.”

• If M̄ accepts, then x 6∈ L and M ′ halts on state “no.”

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 133

A Very Useful Corollary and Its Consequences

Corollary 11 L is recursively enumerable but not recursive,
then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 10 (p. 132), L is recursive, a contradiction.

Corollary 12 H̄ is not recursively enumerable.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 134

R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are
recursively enumerable (note that coRE is not RE).

• coRE = {L : L ∈ RE }.
• RE = {L : L 6∈ RE }.

R: The set of all recursive languages.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 135

R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 132).

• There exist languages in RE but not in R and not in
coRE.

– Such as H (p. 121, p. 122, and p. 133).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 133).

• There are languages in neither RE nor coRE.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 136

R
coRERE

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 137

