A Second Corollary of Cantor's Theorem Corollary 8 The set of all functions on \mathbb{N} is not countable.

- It suffices to prove it for functions from \mathbb{N} to $\{0,1\}$.
- Every such function $f: \mathbb{N} \to \{0, 1\}$ determines a set

$$\{n:f(n)=1\}\subseteq \mathbb{N}$$

and vice versa.

- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $|2^{\mathbb{N}}|$.
- Corollary 7 (p. 116) then implies the claim.

Existence of Uncomputable Problems

- Every program is a finite sequence of 0s and 1s, thus a nonnegative integer.^a
- Hence every program corresponds to some integer.
- The set of programs is countable.

^aUse lexicographic order or other tricks to prevent two binary strings from being mapped to the same integer. Contributed by Mr. Yu-Chih Tung (R98922167) on October 5, 2010.

Existence of Uncomputable Problems (concluded)

- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 8 (p. 117).
- So there are functions for which no programs exist.^a

^aAs a nondeterministic program may not be said to compute a function, we consider only deterministic programs here. Contributed by Mr. Patrick Will (A99725101) on October 5, 2010.

Universal Turing Machine^a

• A universal Turing machine U interprets the input as the *description* of a TM M concatenated with the *description* of an input to that machine, x.

- Both M and x are over the alphabet of U.

• U simulates M on x so that

$$U(M;x) = M(x).$$

• U is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

^aTuring (1936).

The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We knew undecidable problems exist (p. 118).
- We now define a concrete undecidable problem, the halting problem:

 $H = \{M; x : M(x) \neq \nearrow\}.$

- Does M halt on input x?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If M(x) diverges, so does U.
- This TM accepts H.
 - E.g., membership of x in a recursively enumerative language accepted by M can be answered by asking

$$M; x \in H?$$

H Is Not Recursive

- Suppose there is a TM M_H that decides H.
- Consider the program D(M) that calls M_H :
 - 1: **if** $M_H(M; M) =$ "yes" **then**
 - 2: \nearrow ; {Writing an infinite loop is easy, right?}

3: else

4: "yes";

5: end if

- Consider D(D):
 - $-D(D) = \nearrow M_H(D; D) = \text{"yes"} \Rightarrow D; D \in H \Rightarrow D(D) \neq \nearrow, \text{ a contradiction.}$
 - $-D(D) = "yes" \Rightarrow M_H(D; D) = "no" \Rightarrow D; D \notin H \Rightarrow D(D) = \nearrow, a \text{ contradiction.}$

Comments

- Two levels of interpretations of M:
 - A sequence of 0s and 1s (data).
 - An encoding of instructions (programs).
- There are no paradoxes.
 - Concepts should be familiar to computer scientists.
 - Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

Self-Loop Paradoxes

Cantor's Paradox (1899): Let T be the set of all sets.^a

- Then $2^T \subseteq T$ because 2^T is a set.
- But we know $|2^T| > |T|$ (p. 116)!
- We got a "contradiction."
- So what gives?
- Are we willing to give up Cantor's theorem?
- If not, what is a set?

^aRecall this ontological argument for the existence of God by St Anselm (-1109) in the 11th century: If something is possible but is not part of God, then God is not the greatest possible object of thought, a contradiction.

Self-Loop Paradoxes (continued) **Russell's Paradox (1901):** Consider $R = \{A : A \notin A\}$. • If $R \in R$, then $R \notin R$ by definition. • If $R \notin R$, then $R \in R$ also by definition. • In either case, we have a "contradiction." **Eubulides:** The Cretan says, "All Cretans are liars." Liar's Paradox: "This sentence is false." **Hypochondriac:** a patient (like Gödel) with imaginary symptoms and ailments.

Self-Loop Paradoxes (concluded)

Sharon Stone in *The Specialist* (1994): "I'm not a woman you can trust."

Spin City (1996–2002): "I am not gay, but my boyfriend is."

Numbers 12:3, Old Testament: "Moses was the most humble person in all the world $[\cdots]$ " (attributed to Moses).

Bertrand Russell (1872–1970)

Reductions in Proving Undecidability

- Suppose we are asked to prove L is undecidable.
- Language H is known to be undecidable.
- We then try to find a computable transformation (called **reduction**) R such that^a

 $\forall x \ \{R(x) \in L \text{ if and only if } x \in H\}.$

- We can answer " $x \in H$?" for any x by asking " $R(x) \in L$?" instead.
- This suffices to prove that L is undecidable.

^aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

More Undecidability

- $H^* = \{M : M \text{ halts on all inputs}\}.$
 - Given the question " $M; x \in H$?" we construct the following machine:^a

 $M_x(y): M(x).$

- $-M_x$ halts on all inputs if and only if M halts on x.
- In other words, $M_x \in H^*$ if and only if $M; x \in H$.
- So if H^* were recursive, H would be recursive, a contradiction.

^aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_x ignores its input y; x is part of M_x 's code but not M_x 's input.

More Undecidability (concluded)

- $\{M; x : \text{there is a } y \text{ such that } M(x) = y\}.$
- $\{M; x : \text{the computation } M \text{ on input } x \text{ uses all states of } M\}.$

•
$$\{M; x; y : M(x) = y\}.$$

Complements of Recursive Languages

Lemma 9 If L is recursive, then so is \overline{L} .

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \overline{L} .

Recursive and Recursively Enumerable Languages Lemma 10 L is recursive if and only if both L and \overline{L} are recursively enumerable.

- Suppose both L and \overline{L} are recursively enumerable, accepted by M and \overline{M} , respectively.
- Simulate M and \overline{M} in an *interleaved* fashion.
- If M accepts, then $x \in L$ and M' halts on state "yes."
- If \overline{M} accepts, then $x \notin L$ and M' halts on state "no."

A Very Useful Corollary and Its Consequences

Corollary 11 L is recursively enumerable but not recursive, then \overline{L} is not recursively enumerable.

- Suppose \overline{L} is recursively enumerable.
- Then both L and \overline{L} are recursively enumerable.
- By Lemma 10 (p. 132), L is recursive, a contradiction.

Corollary 12 \overline{H} is not recursively enumerable.

R, RE, and coRE

RE: The set of all recursively enumerable languages.

- **coRE:** The set of all languages whose complements are recursively enumerable (note that coRE is not $\overline{\text{RE}}$).
 - $\operatorname{coRE} = \{ L : \overline{L} \in \operatorname{RE} \}.$
 - $\overline{\operatorname{RE}} = \{ L : L \notin \operatorname{RE} \}.$
- **R:** The set of all recursive languages.

R, RE, and coRE (concluded)

- $R = RE \cap coRE$ (p. 132).
- There exist languages in RE but not in R and not in coRE.
 - Such as H (p. 121, p. 122, and p. 133).
- There are languages in coRE but not in RE.
 Such as \$\bar{H}\$ (p. 133).
- There are languages in neither RE nor coRE.

