Complementing a TM's Halting States

- Let M decide L, and M^{\prime} be M after "yes" \leftrightarrow "no".
- If M is a deterministic TM, then M^{\prime} decides \bar{L}.
- But if M is an NTM, then M^{\prime} may not decide \bar{L}.
- It is possible that both M and M^{\prime} accept x (see next page).
- When this happens, M and M^{\prime} accept languages that are not complements of each other.

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time $f(n)$, where $f: \mathbb{N} \rightarrow \mathbb{N}$, if
- N decides L, and
- for any $x \in \Sigma^{*}, N$ does not have a computation path longer than $f(|x|)$.
- We charge only the "depth" of the computation tree.

Time Complexity Classes under Nondeterminism

- $\operatorname{NTIME}(f(n))$ is the set of languages decided by NTMs within time $f(n)$.
- $\operatorname{NTIME}(f(n))$ is a complexity class.

NP

- Define

$$
\mathrm{NP}=\bigcup_{k>0} \operatorname{NTIME}\left(n^{k}\right) .
$$

- Clearly $\mathrm{P} \subseteq \mathrm{NP}$.
- Think of NP as efficiently verifiable problems.
- Boolean satisfiability (p. 90 and p. 153).
- The most important open problem in computer science is whether $\mathrm{P}=\mathrm{NP}$.

Simulating Nondeterministic TMs

Surprisingly, nondeterminism does not add power to TMs.
Theorem 4 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic $T M M$ in time $O\left(c^{f(n)}\right)$, where $c>1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search. ${ }^{\text {a }}$
- M does not need to know $f(n)$.
- As N is time-bounded, the depth-first search will not run indefinitely.

[^0]
The Proof (concluded)

- If some path leads to "yes," then M enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.
- Note that every path has a finite length by definition. Corollary $5 \operatorname{NTIME}(f(n))) \subseteq \bigcup_{c>1} \operatorname{TIME}\left(c^{f(n)}\right)$.

NTIME vs. TIME

- Does converting an NTM into a TM require exploring all of the computation paths of the NTM as done in Theorem 4 (p. 87)?
- This is the most important question in theory with practical implications.

A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{0,1\} ;\{$ Nondeterministic choice. $\}$
3: end for
4: \{Verification:\}
5: if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ then
6: "yes";
7: else
8: "no";
9: end if

The Schematic Computation Tree for Satisfiability

Analysis

- The algorithm decides language $\{\phi: \phi$ is satisfiable $\}$.
- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment out of 2^{n}.
- ϕ is satisfiable iff there is a truth assignment that satisfies ϕ.
- But there is a truth assignment that satisfies ϕ iff there is a computation path that results in "yes."
- General paradigm: Guess a "proof" and then verify it.

The Traveling Salesman Problem

- We are given n cities $1,2, \ldots, n$ and integer distances $d_{i j}$ between any two cities i and j.
- Assume $d_{i j}=d_{j i}$ for convenience.
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.
- Both problems are extremely important but equally hard (p. 348 and p. 442).

```
    A Nondeterministic Algorithm for TSP (D)
    1: for }i=1,2,\ldots,n d
```



```
    end for
    4: }\mp@subsup{x}{n+1}{}:=\mp@subsup{x}{1}{}
    5: {Verification stage:}
    6: if }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}\mathrm{ are distinct and }\mp@subsup{\sum}{i=1}{n}\mp@subsup{d}{\mp@subsup{x}{i}{},\mp@subsup{x}{i+1}{}}{}\leqB\mathrm{ then
    7: "yes";
    8: else
    9: "no";
10: end if
```

${ }^{\text {a }}$ Can be made into a series of $\log _{2} n$ binary choices for each x_{i} so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

Analysis

- Suppose the input graph contains at least one tour of the cities with a total distance at most B.
- Then there is a computation path that leads to "yes."a
- Suppose the input graph contains no tour of the cities with a total distance at most B.
- Then every computation path leads to "no."
${ }^{\text {a }}$ It does not mean the algorithm will follow that path. It just means such a computation path exists.

Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{NSPACE}(f(n))
$$

if there is an NTM with input and output that decides L and operates within space bound $f(n)$.

- NSPACE $(f(n))$ is a set of languages.
- As in the linear speedup theorem (Theorem 3 on p. 67), constant coefficients do not matter.

Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- reachability asks if, given nodes a and b, does G contain a path from a to b ?
- Can be easily solved in polynomial time by breadth-first search.
- How about the nondeterministic space complexity?

The First Try in NSPACE $(n \log n)$

1: $x_{1}:=a ;\{$ Assume $a \neq b$.\}
2: for $i=2,3, \ldots, n$ do
3: Guess $x_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} ;\{$ The i th node. $\}$
4: end for
5: for $i=2,3, \ldots, n$ do
6: if $\left(x_{i-1}, x_{i}\right) \notin E$ then
7: "no";
8: end if
9: \quad if $x_{i}=b$ then
10: "yes";
11: end if
12: end for
13: "no";

In Fact REACHABILIty $\in \operatorname{NSPACE}(\log n)$

1: $x:=a$;
2: for $i=2,3, \ldots, n$ do
3: Guess $y \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} ;\{$ The next node. $\}$
4: \quad if $(x, y) \notin E$ then
5: "no";
6: end if
7: if $y=b$ then
8: "yes";
9: end if
10: $\quad x:=y$;
11: end for
12: "no";

Space Analysis

- Variables i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

$$
\text { REACHABILITY } \in \text { NSPACE }(\log n) .
$$

- REACHABILITY with more than one terminal node also has the same complexity.
- REACHABILIty $\in \mathrm{P}$ (p. 193).

Undecidability

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do?

- Bertrand Russell (1872-1970), Autobiography, Vol. I

Infinite Sets

- A set is countable if it is finite or if it can be put in one-one correspondence with $\mathbb{N}=\{0,1, \ldots\}$, the set of natural numbers.
- Set of integers \mathbb{Z}.

$$
\text { * } 0 \leftrightarrow 0 .
$$

$$
* 1 \leftrightarrow 1,2 \leftrightarrow 3,3 \leftrightarrow 5, \ldots .
$$

$$
*-1 \leftrightarrow 2,-2 \leftrightarrow 4,-3 \leftrightarrow 6, \ldots
$$

- Set of positive integers $\mathbb{Z}^{+}: i-1 \leftrightarrow i$.
- Set of odd integers: $(i-1) / 2 \leftrightarrow i$.
- Set of rational numbers: See next page.

Rational Numbers Are Countable

Cardinality

- For any set A, define $|A|$ as A 's cardinality (size).
- Two sets are said to have the same cardinality, or

$$
|A|=|B| \quad \text { or } \quad A \sim B,
$$

if there exists a one-to-one correspondence between their elements.

- 2^{A} denotes set A 's power set, that is $\{B: B \subseteq A\}$.
- E.g., $\{0,1\}$'s power set is $2^{\{0,1\}}=\{\emptyset,\{0\},\{1\},\{0,1\}\}$.
- If $|A|=k$, then $\left|2^{A}\right|=2^{k}$.

Cardinality (concluded)

- Define $|A| \leq|B|$ if there is a one-to-one correspondence between A and a subset of B 's.
- Define $|A|<|B|$ if $|A| \leq|B|$ but $|A| \neq|B|$.
- Obviously, if $A \subseteq B$, then $|A| \leq|B|$.
- But if $A \subsetneq B$, then $|A|<|B|$?

Cardinality and Infinite Sets

- If A and B are infinite sets, it is possible that $A \subsetneq B$ yet $|A|=|B|$.
- The set of integers properly contains the set of odd integers.
- But the set of integers has the same cardinality as the set of odd integers (p. 103).
- A lot of "paradoxes" arise.

Galileo's ${ }^{\text {a }}$ Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid ${ }^{\text {b }}$ that the whole is greater than any of its proper parts.
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinion.

[^1]
Hilbert's ${ }^{\text {a }}$ Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now imagine a hotel with an infinite number of rooms, all of which are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor.
- He moves the person previously occupying Room 1 to Room 2, the person from Room 2 to Room 3, and so on.
- The new customer now occupies Room 1.

[^2]
Hilbert's Paradox of the Grand Hotel (concluded)

- Now imagine a hotel with an infinite number of rooms, all taken up.
- An infinite number of new guests come in and ask for rooms.
- "Certainly," says the proprietor.
- He moves the occupant of Room 1 to Room 2, the occupant of Room 2 to Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

Cantor's ${ }^{\mathrm{a}}$ Theorem

Theorem 6 The set of all subsets of $\mathbb{N}\left(2^{\mathbb{N}}\right)$ is infinite and not countable.

- Suppose $\left(2^{\mathbb{N}}\right)$ is countable with $f: \mathbb{N} \rightarrow 2^{\mathbb{N}}$ being a bijection. ${ }^{\text {b }}$
- Consider the set $B=\{k \in \mathbb{N}: k \notin f(k)\} \subseteq \mathbb{N}$.
- Suppose $B=f(n)$ for some $n \in \mathbb{N}$.
${ }^{\text {a }}$ Georg Cantor (1845-1918). According to Kac and Ulam, "[If] one had to name a single person whose work has had the most decisive influence on the present spirit of mathematics, it would almost surely be Georg Cantor."
${ }^{\mathrm{b}}$ Note that $f(k)$ is a subset of \mathbb{N}.

The Proof (concluded)

- If $n \in f(n)=B$, then $n \in B$, but then $n \notin B$ by B 's definition.
- If $n \notin f(n)=B$, then $n \notin B$, but then $n \in B$ by B 's definition.
- Hence $B \neq f(n)$ for any n.
- f is not a bijection, a contradiction.

Georg Cantor (1845-1918)

Cantor's Diagonalization Argument Illustrated

A Corollary of Cantor's Theorem

Corollary $\mathbf{7}$ For any set T, finite or infinite,

$$
|T|<\left|2^{T}\right| .
$$

- The inequality holds in the finite T case as $k<2^{k}$.
- Assume T is infinite now.
- To prove $|T| \leq\left|2^{T}\right|$, simply consider $f(x)=\{x\} \in 2^{T}$.
- f maps a member of $T=\{a, b, c, \ldots\}$ to a corresponding member of $\{\{a\},\{b\},\{c\}, \ldots\} \subseteq 2^{T}$.
- To prove the strict inequality $|T| \lesseqgtr\left|2^{T}\right|$, we use the same argument as Cantor's theorem.

[^0]: ${ }^{\text {a }}$ You may have to switch to breadth-first search if $f(n)$ can be infinite.

[^1]: ${ }^{\text {a }}$ Galileo (1564-1642).
 ${ }^{\mathrm{b}}$ Euclid (325 B.C.-265 B.C.).

[^2]: ${ }^{\text {a }}$ David Hilbert (1862-1943).

