Theory of Computation Lecture Notes

Prof. Yuh-Dauh Lyuu Dept. Computer Science & Information Engineering and Department of Finance National Taiwan University

Class Information

- Papadimitriou. Computational Complexity. 2nd printing. Addison-Wesley. 1995.
 - We more or less follow the topics of the book.
 - More "advanced" materials may be added.
- You may want to review discrete mathematics.

Class Information (concluded)

• More information and lecture notes can be found at

www.csie.ntu.edu.tw/~lyuu/complexity.html

- Homeworks, exams, solutions and teaching assistants will be announced there.
- Please ask many questions in class.
 - The best way for me to remember you in a large class.^a

^a "[A] science concentrator [...] said that in his eighth semester of [Harvard] college, there was not a single science professor who could identify him by name." (*New York Times*, September 3, 2003.)

Grading

- Homeworks.
 - Do not copy others' homeworks.
 - Do not give your homeworks for others to copy.
- Two to three exams.
- You must show up for the exams in person.
- If you cannot make it to an exam, please email me or a TA beforehand (unless there is a legitimate reason).
- Missing the final exam will earn a "fail" grade.

Problems and Algorithms

I have never done anything "useful." — Godfrey Harold Hardy (1877–1947), A Mathematician's Apology (1940)

What This Course Is All About

Computation: What is computation?

Computability: What can be computed?

- There are *well-defined* problems that cannot be computed.
- In fact, "most" problems cannot be computed.

What This Course Is All About (concluded)

- **Complexity:** What is a computable problem's inherent complexity?
 - Some computable problems require at least exponential time and/or space.
 - They are said to be **intractable**.
 - Some practical problems require superpolynomial resources unless certain conjectures are disproved.
 - Resources besides time and space?
 - Circuit size, circuit layout area, program size, number of random bits, etc.

Tractability and Intractability

- Polynomial in terms of the input size *n* defines tractability.
 - $-n, n \log n, n^2, n^{90}.$
 - Time, space, and circuit size.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Exponential-time or superpolynomial-time algorithms are usually impractical.

$$- n^{\log n}, 2^{\sqrt{n}}, a 2^n, n! \sim \sqrt{2\pi n} (n/e)^n.$$

^aSize of depth-3 circuits to compute the majority function (Wolfovitz (2006)).

Growth of	Factorials
-----------	------------

n	n!	n	n!
1	1	9	$362,\!880$
2	2	10	$3,\!628,\!800$
3	6	11	$39,\!916,\!800$
4	24	12	479,001,600
5	120	13	$6,\!227,\!020,\!800$
6	720	14	$87,\!178,\!291,\!200$
7	5040	15	$1,\!307,\!674,\!368,\!000$
8	40320	16	20,922,789,888,000

Growth of E. Coli $^{\rm a}$

- Under ideal conditions, *E. Coli* bacteria divide every 20 minutes.
- In two days, a single *E. Coli* bacterium would become 2^{144} bacteria.
- They would weigh 2,664 times the Earth!

^aNick Lane, Power, Sex, Suicide: Mitochondria and the Meaning of Life (2005).

Moore's Law to the Rescue?^a

- Moore's law says the computing power doubles every 1.5 years.^b
- So the computing power grows like

 $4^{y/3}$,

where y is the number of years from now.

- Assume Moore's law holds forever.
- Can you let the law take care of exponential complexity?
- Suppose a problem takes a^n seconds to solve now, where

^aContributed by Ms. Amy Liu (**J94922016**) on May 15, 2006. Thanks also to a lively discussion on September 14, 2010. ^bMoore (1965). n is the input length.

Moore's Law to the Rescue (concluded)?

• The same problem will take

$$\frac{a^n}{4^{y/3}}$$

seconds to solve y years from now.

- The hardware $3n \log_4 a$ years from now takes 1 second to solve it.
- The overall complexity is linear in n (years).

Turing Machines

Alan Turing (1912–1954)

What Is Computation?

- That can be coded in an **algorithm**.^a
- An algorithm is a detailed step-by-step method for solving a problem.
 - The Euclidean algorithm for the greatest common divisor is an algorithm.
 - "Let s be the least upper bound of compact set A" is not an algorithm.
 - "Let s be a smallest element of a finite-sized array" can be solved by an algorithm.

^aMuhammad ibn Mūsā Al-Khwārizmī (780–850).

Turing Machines^a

- A Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K is a finite set of **states**.
- $s \in K$ is the **initial state**.
- Σ is a finite set of **symbols** (disjoint from K). - Σ includes | | (blank) and \triangleright (first symbol).
- $\delta: K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ is a transition function.

 $- \leftarrow (left), \rightarrow (right), and - (stay) signify cursor movements.$

^aTuring (1936).

More about δ

- The program has the halting state (h), the accepting state ("yes"), and the rejecting state ("no").
- Given current state $q \in K$ and current symbol $\sigma \in \Sigma$,

$$\delta(q,\sigma) = (p,\rho,D).$$

- It specifies:
 - * The next state p;
 - * The symbol ρ to be written over σ ;
 - * The direction D the cursor will move *afterwards*.
- We require $\delta(q, \triangleright) = (p, \triangleright, \rightarrow)$ so that the cursor never falls off the left end of the string.

More about δ (concluded)

• Think of the program as lines of codes:

$$\delta(q_1, \sigma_1) = (p_1, \rho_1, D_1),$$

$$\delta(q_2, \sigma_2) = (p_2, \rho_2, D_2),$$

$$\vdots$$

$$\delta(q_n, \sigma_n) = (p_n, \rho_n, D_n).$$

- Given the state q and the symbol under the cursor σ , the machine finds the line that matches (q, σ) .
- That line of code is then executed.

The Operations of TMs

- Initially the state is s.
- The string on the tape is initialized to a ▷, followed by a finite-length string x ∈ (Σ {∐})*.
- x is the **input** of the TM.
 - The input must not contain \square s (why?)!
- The cursor is pointing to the first symbol, always a \triangleright .
- The TM takes each step according to δ .
- The cursor may overwrite [] to make the string longer during the computation.

"Physical" Interpretations

- The tape: computer memory and registers.
 - Except that the tape can be lengthened on demand.
- δ : program.
- K: instruction numbers.
- s: "main()" in C.
- Σ : **alphabet** much like the ASCII code.

Program Count

- A program has a *finite* size.
- Recall that $\delta: K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}.$
- So $|K| \times |\Sigma|$ "lines" suffice to specify a program, one line per pair from $K \times \Sigma$ (|x| denotes the length of x).
- Given K and Σ , there are

 $((|K|+3) \times |\Sigma| \times 3)^{|K| \times |\Sigma|}$

possible δ 's (see next page).

– This is a constant—albeit large.

The Halting of a TM

• A TM *M* may **halt** in three cases.

"yes": M accepts its input x, and M(x) = "yes".

"no": M rejects its input x, and M(x) = "no".

- h: M(x) = y means the string (tape) consists of a ▷, followed by a finite string y, whose last symbol is not \sqcup , followed by a string of \sqcup s.
 - -y is the **output** of the computation.
 - -y may be empty denoted by ϵ .
- If M never halts on x, then write $M(x) = \nearrow$.

Why TMs?

- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
- One can conceivably develop a complexity theory based on something similar to C++ or Java, say.
- But the added complexity does not yield additional fundamental insights.
- We will describe TMs in pseudocode.

Remarks

- A problem is computable if there is a TM that halts with the correct answer.
- If a TM (i.e., program) does not always halt, it does not solve a computable problem.^a
- A computation model should be "physically" realizable.

^aContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Control-C is not a legitimate way to halt a program.

Remarks (concluded)

- Although a TM requires a tape of infinite length, which is not realizable, it is not a major conceptual problem.^a
 - Imagine you are living next to a paper mill, while carrying out the TM program using pencil and paper.
 - The mill will produce extra paper if needed.

^aThanks to a lively discussion on September 20, 2006.

The Concept of Configuration

- A **configuration** is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
 - What does your PC save before it sleeps?
 - Enough for it to resume work later.
- Similar to the concept of state in Markov process.

Configurations (concluded)

- A configuration is a triple (q, w, u):
 - $-q \in K.$
 - $w \in \Sigma^*$ is the string to the left of the cursor (inclusive).
 - $u \in \Sigma^*$ is the string to the right of the cursor.
- Note that (w, u) describes both the string and the cursor position.

Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration (q', w', u') in one step,

$$(q,w,u) \stackrel{M}{\longrightarrow} (q',w',u'),$$

if a step of M from configuration (q, w, u) results in configuration (q', w', u').

- $(q, w, u) \xrightarrow{M^k} (q', w', u')$: Configuration (q, w, u) yields configuration (q', w', u') in $k \in \mathbb{N}$ steps.
- $(q, w, u) \xrightarrow{M^*} (q', w', u')$: Configuration (q, w, u) yields configuration (q', w', u').

Example: How To Insert a Symbol

- We want to compute f(x) = ax.
 - The TM moves the last symbol of x to the right by one position.
 - It then moves the next to last symbol to the right, and so on.
 - The TM finally writes a in the first position.
- The total number of steps is O(n), where n is the length of x.

Palindromes

- A string is a **palindrome** if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes:
 - It matches the first character with the last character.
 - It matches the second character with the next to last character, etc. (see next page).
 - "yes" for palindromes and "no" for nonpalindromes.
- This program takes $O(n^2)$ steps.
- We cannot do better.^a

^aHennie (1965).

Comments on Lower-Bound Proofs

- They are usually difficult.
 - Worthy of a Ph.D. degree.
- An algorithm whose running time matches a lower bound means it is optimal.
 - The simple $O(n^2)$ algorithm for PALINDROME is optimal.
- This happens rarely and is model dependent.
 - Searching, sorting, PALINDROME, matrix-vector multiplication, etc.