
Theory of Computation Lecture
Notes

Prof. Yuh-Dauh Lyuu

Dept. Computer Science & Information Engineering
and

Department of Finance
National Taiwan University

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1

Class Information

• Papadimitriou. Computational Complexity. 2nd
printing. Addison-Wesley. 1995.

– We more or less follow the topics of the book.

– More “advanced” materials may be added.

• You may want to review discrete mathematics.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 2

Class Information (concluded)

• More information and lecture notes can be found at

www.csie.ntu.edu.tw/~lyuu/complexity.html

– Homeworks, exams, solutions and teaching assistants
will be announced there.

• Please ask many questions in class.

– The best way for me to remember you in a large
class.a

a“[A] science concentrator [...] said that in his eighth semester of

[Harvard] college, there was not a single science professor who could

identify him by name.” (New York Times, September 3, 2003.)

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 3

Grading

• Homeworks.

– Do not copy others’ homeworks.

– Do not give your homeworks for others to copy.

• Two to three exams.

• You must show up for the exams in person.

• If you cannot make it to an exam, please email me or a
TA beforehand (unless there is a legitimate reason).

• Missing the final exam will earn a “fail” grade.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 4

Problems and Algorithms

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 5

I have never done anything “useful.”
— Godfrey Harold Hardy (1877–1947),

A Mathematician’s Apology (1940)

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 6

What This Course Is All About

Computation: What is computation?

Computability: What can be computed?

• There are well-defined problems that cannot be
computed.

• In fact, “most” problems cannot be computed.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 7

What This Course Is All About (concluded)

Complexity: What is a computable problem’s inherent
complexity?

• Some computable problems require at least
exponential time and/or space.

– They are said to be intractable.

• Some practical problems require superpolynomial
resources unless certain conjectures are disproved.

• Resources besides time and space?
– Circuit size, circuit layout area, program size,

number of random bits, etc.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 8

Tractability and Intractability

• Polynomial in terms of the input size n defines
tractability.

– n, n log n, n2, n90.

– Time, space, and circuit size.

• It results in a fruitful and practical theory of complexity.

• Few practical, tractable problems require a large degree.

• Exponential-time or superpolynomial-time algorithms
are usually impractical.

– nlog n, 2
√

n,a 2n, n! ∼ √
2πn (n/e)n.

aSize of depth-3 circuits to compute the majority function (Wolfovitz

(2006)).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 9

Growth of Factorials

n n! n n!

1 1 9 362,880

2 2 10 3,628,800

3 6 11 39,916,800

4 24 12 479,001,600

5 120 13 6,227,020,800

6 720 14 87,178,291,200

7 5040 15 1,307,674,368,000

8 40320 16 20,922,789,888,000

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 10

Growth of E. Colia

• Under ideal conditions, E. Coli bacteria divide every 20
minutes.

• In two days, a single E. Coli bacterium would become
2144 bacteria.

• They would weigh 2,664 times the Earth!
aNick Lane, Power, Sex, Suicide: Mitochondria and the Meaning of

Life (2005).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 11

Moore’s Law to the Rescue?a

• Moore’s law says the computing power doubles every 1.5
years.b

• So the computing power grows like

4y/3,

where y is the number of years from now.

• Assume Moore’s law holds forever.

• Can you let the law take care of exponential complexity?

• Suppose a problem takes an seconds to solve now, where
aContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Thanks

also to a lively discussion on September 14, 2010.
bMoore (1965).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 12

n is the input length.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 13

Moore’s Law to the Rescue (concluded)?

• The same problem will take

an

4y/3

seconds to solve y years from now.

• The hardware 3n log4 a years from now takes 1 second to
solve it.

• The overall complexity is linear in n (years).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 14

Turing Machines

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 15

Alan Turing (1912–1954)

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 16

What Is Computation?

• That can be coded in an algorithm.a

• An algorithm is a detailed step-by-step method for
solving a problem.

– The Euclidean algorithm for the greatest common
divisor is an algorithm.

– “Let s be the least upper bound of compact set A” is
not an algorithm.

– “Let s be a smallest element of a finite-sized array”
can be solved by an algorithm.

aMuhammad ibn Mūsā Al-Khwārizmī (780–850).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 17

Turing Machinesa

• A Turing machine (TM) is a quadruple M = (K, Σ, δ, s).

• K is a finite set of states.

• s ∈ K is the initial state.

• Σ is a finite set of symbols (disjoint from K).

– Σ includes
⊔

(blank) and ¤ (first symbol).

• δ : K ×Σ → (K ∪ {h, “yes”, “no”})×Σ× {←,→,−} is a
transition function.

– ← (left), → (right), and − (stay) signify cursor
movements.

aTuring (1936).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 18

A TM Schema

δ

#1000110000111001110001110���

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 19

More about δ

• The program has the halting state (h), the accepting
state (“yes”), and the rejecting state (“no”).

• Given current state q ∈ K and current symbol σ ∈ Σ,

δ(q, σ) = (p, ρ, D).

– It specifies:
∗ The next state p;
∗ The symbol ρ to be written over σ;
∗ The direction D the cursor will move afterwards.

• We require δ(q, ¤) = (p, ¤,→) so that the cursor never
falls off the left end of the string.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 20

More about δ (concluded)

• Think of the program as lines of codes:

δ(q1, σ1) = (p1, ρ1, D1),

δ(q2, σ2) = (p2, ρ2, D2),
...

δ(qn, σn) = (pn, ρn, Dn).

• Given the state q and the symbol under the cursor σ,
the machine finds the line that matches (q, σ).

• That line of code is then executed.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 21

The Operations of TMs

• Initially the state is s.

• The string on the tape is initialized to a ¤, followed by a
finite-length string x ∈ (Σ− {⊔})∗.

• x is the input of the TM.

– The input must not contain
⊔

s (why?)!

• The cursor is pointing to the first symbol, always a ¤.

• The TM takes each step according to δ.

• The cursor may overwrite
⊔

to make the string longer
during the computation.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 22

“Physical” Interpretations

• The tape: computer memory and registers.

– Except that the tape can be lengthened on demand.

• δ: program.

• K: instruction numbers.

• s: “main()” in C.

• Σ: alphabet much like the ASCII code.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 23

Program Count

• A program has a finite size.

• Recall that
δ : K × Σ → (K ∪ {h, “yes”, “no”})× Σ× {←,→,−}.

• So |K| × |Σ| “lines” suffice to specify a program, one line
per pair from K × Σ (|x | denotes the length of x).

• Given K and Σ, there are

((|K|+ 3)× |Σ| × 3)|K|×|Σ|

possible δ’s (see next page).

– This is a constant—albeit large.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 24

(| K | + 3) Χ | Σ | Χ 3
possibilities

K Σ

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 25

The Halting of a TM

• A TM M may halt in three cases.

“yes”: M accepts its input x, and M(x) = “yes”.

“no”: M rejects its input x, and M(x) = “no”.

h: M(x) = y means the string (tape) consists of a ¤,
followed by a finite string y, whose last symbol is not⊔

, followed by a string of
⊔

s.

– y is the output of the computation.
– y may be empty denoted by ε.

• If M never halts on x, then write M(x) =↗.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 26

Why TMs?

• Because of the simplicity of the TM, the model has the
advantage when it comes to complexity issues.

• One can conceivably develop a complexity theory based
on something similar to C++ or Java, say.

• But the added complexity does not yield additional
fundamental insights.

• We will describe TMs in pseudocode.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 27

Remarks

• A problem is computable if there is a TM that halts
with the correct answer.

• If a TM (i.e., program) does not always halt, it does not
solve a computable problem.a

• A computation model should be “physically” realizable.
aContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Control-

C is not a legitimate way to halt a program.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 28

Remarks (concluded)

• Although a TM requires a tape of infinite length, which
is not realizable, it is not a major conceptual problem.a

– Imagine you are living next to a paper mill, while
carrying out the TM program using pencil and paper.

– The mill will produce extra paper if needed.
aThanks to a lively discussion on September 20, 2006.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 29

The Concept of Configuration

• A configuration is a complete description of the
current state of the computation.

• The specification of a configuration is sufficient for the
computation to continue as if it had not been stopped.

– What does your PC save before it sleeps?

– Enough for it to resume work later.

• Similar to the concept of state in Markov process.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 30

Configurations (concluded)

• A configuration is a triple (q, w, u):

– q ∈ K.

– w ∈ Σ∗ is the string to the left of the cursor
(inclusive).

– u ∈ Σ∗ is the string to the right of the cursor.

• Note that (w, u) describes both the string and the cursor
position.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 31

T

#1000110000111001110001110���

• w = ¤1000110000.

• u = 111001110001110.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 32

Yielding

• Fix a TM M .

• Configuration (q, w, u) yields configuration (q′, w′, u′) in one

step,

(q, w, u)
M−→ (q′, w′, u′),

if a step of M from configuration (q, w, u) results in

configuration (q′, w′, u′).

• (q, w, u)
Mk

−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′) in k ∈ N steps.

• (q, w, u)
M∗
−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 33

Example: How To Insert a Symbol

• We want to compute f(x) = ax.

– The TM moves the last symbol of x to the right by
one position.

– It then moves the next to last symbol to the right,
and so on.

– The TM finally writes a in the first position.

• The total number of steps is O(n), where n is the length
of x.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 34

Palindromes

• A string is a palindrome if it reads the same forwards
and backwards (e.g., 001100).

• A TM program can be written to recognize palindromes:

– It matches the first character with the last character.

– It matches the second character with the next to last
character, etc. (see next page).

– “yes” for palindromes and “no” for nonpalindromes.

• This program takes O(n2) steps.

• We cannot do better.a

aHennie (1965).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 35

100011000000100111

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 36

Comments on Lower-Bound Proofs

• They are usually difficult.

– Worthy of a Ph.D. degree.

• An algorithm whose running time matches a lower
bound means it is optimal.

– The simple O(n2) algorithm for palindrome is
optimal.

• This happens rarely and is model dependent.

– Searching, sorting, palindrome, matrix-vector
multiplication, etc.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 37

