Theory of Computation Lecture Notes

Prof. Yuh-Dauh Lyuu
Dept. Computer Science \& Information Engineering and
Department of Finance
National Taiwan University

Class Information

- Papadimitriou. Computational Complexity. 2nd printing. Addison-Wesley. 1995.
- We more or less follow the topics of the book.
- More "advanced" materials may be added.
- You may want to review discrete mathematics.

Class Information (concluded)

- More information and lecture notes can be found at www.csie.ntu.edu.tw/~lyuu/complexity.html
- Homeworks, exams, solutions and teaching assistants will be announced there.
- Please ask many questions in class.
- The best way for me to remember you in a large class. ${ }^{\text {a }}$

[^0]
Grading

- Homeworks.
- Do not copy others' homeworks.
- Do not give your homeworks for others to copy.
- Two to three exams.
- You must show up for the exams in person.
- If you cannot make it to an exam, please email me or a TA beforehand (unless there is a legitimate reason).
- Missing the final exam will earn a "fail" grade.

Problems and Algorithms

What This Course Is All About

Computation: What is computation?
Computability: What can be computed?

- There are well-defined problems that cannot be computed.
- In fact, "most" problems cannot be computed.

What This Course Is All About (concluded)

Complexity: What is a computable problem's inherent complexity?

- Some computable problems require at least exponential time and/or space.
- They are said to be intractable.
- Some practical problems require superpolynomial resources unless certain conjectures are disproved.
- Resources besides time and space?
- Circuit size, circuit layout area, program size, number of random bits, etc.

Tractability and Intractability

- Polynomial in terms of the input size n defines tractability.
$-n, n \log n, n^{2}, n^{90}$.
- Time, space, and circuit size.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Exponential-time or superpolynomial-time algorithms are usually impractical.

$$
-n^{\log n}, 2^{\sqrt{n}},{ }^{\mathrm{a}} 2^{n}, n!\sim \sqrt{2 \pi n}(n / e)^{n}
$$

[^1]| Growth of Factorials | | | |
| :---: | :---: | :---: | :---: |
| | n ! | n | $n!$ |
| 1 | 1 | 9 | 362,880 |
| 2 | 2 | 10 | 3,628,800 |
| 3 | 6 | 11 | 39,916,800 |
| 4 | 24 | 12 | 479,001,600 |
| 5 | 120 | 13 | 6,227,020,800 |
| 6 | 720 | 14 | 87,178,291,200 |
| 7 | 5040 | 15 | 1,307,674,368,000 |
| 8 | 40320 | 16 | 20,922,789,888,000 |

Growth of E. Colia

- Under ideal conditions, E. Coli bacteria divide every 20 minutes.
- In two days, a single E. Coli bacterium would become 2^{144} bacteria.
- They would weigh 2,664 times the Earth!

[^2]
Moore's Law to the Rescue? ${ }^{\text {a }}$

- Moore's law says the computing power doubles every 1.5 years. ${ }^{\text {b }}$
- So the computing power grows like

$$
4^{y / 3}
$$

where y is the number of years from now.

- Assume Moore's law holds forever.
- Can you let the law take care of exponential complexity?
- Suppose a problem takes a^{n} seconds to solve now, where ${ }^{\text {a }}$ Contributed by Ms. Amy Liu (J94922016) on May 15, 2006. Thanks also to a lively discussion on September 14, 2010.
${ }^{\mathrm{b}}$ Moore (1965).
n is the input length.

Moore's Law to the Rescue (concluded)?

- The same problem will take

$$
\frac{a^{n}}{4^{y / 3}}
$$

seconds to solve y years from now.

- The hardware $3 n \log _{4} a$ years from now takes 1 second to solve it.
- The overall complexity is linear in n (years).

Turing Machines

Alan Turing (1912-1954)

What Is Computation?

- That can be coded in an algorithm. ${ }^{\text {a }}$
- An algorithm is a detailed step-by-step method for solving a problem.
- The Euclidean algorithm for the greatest common divisor is an algorithm.
- "Let s be the least upper bound of compact set A " is not an algorithm.
- "Let s be a smallest element of a finite-sized array" can be solved by an algorithm.

[^3]
Turing Machines ${ }^{\text {a }}$

- A Turing machine (TM) is a quadruple $M=(K, \Sigma, \delta, s)$.
- K is a finite set of states.
- $s \in K$ is the initial state.
- Σ is a finite set of symbols (disjoint from K).
$-\Sigma$ includes $\bigsqcup($ blank $)$ and $\triangleright($ first symbol $)$.
- $\delta: K \times \Sigma \rightarrow(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ is a transition function.
$-\leftarrow$ (left) \rightarrow (right), and - (stay) signify cursor movements.
${ }^{\text {a }}$ Turing (1936).

More about δ

- The program has the halting state (h), the accepting state ("yes"), and the rejecting state ("no").
- Given current state $q \in K$ and current symbol $\sigma \in \Sigma$,

$$
\delta(q, \sigma)=(p, \rho, D)
$$

- It specifies:
* The next state p;
* The symbol ρ to be written over σ;
* The direction D the cursor will move afterwards.
- We require $\delta(q, \triangleright)=(p, \triangleright, \rightarrow)$ so that the cursor never falls off the left end of the string.

More about δ (concluded)

- Think of the program as lines of codes:

$$
\begin{aligned}
\delta\left(q_{1}, \sigma_{1}\right) & =\left(p_{1}, \rho_{1}, D_{1}\right) \\
\delta\left(q_{2}, \sigma_{2}\right) & =\left(p_{2}, \rho_{2}, D_{2}\right) \\
& \vdots \\
\delta\left(q_{n}, \sigma_{n}\right) & =\left(p_{n}, \rho_{n}, D_{n}\right)
\end{aligned}
$$

- Given the state q and the symbol under the cursor σ, the machine finds the line that matches (q, σ).
- That line of code is then executed.

The Operations of TMs

- Initially the state is s.
- The string on the tape is initialized to a \triangleright, followed by a finite-length string $x \in(\Sigma-\{\bigsqcup\})^{*}$.
- x is the input of the TM.
- The input must not contain $\bigsqcup \mathrm{s}$ (why?)!
- The cursor is pointing to the first symbol, always a \triangleright.
- The TM takes each step according to δ.
- The cursor may overwrite \bigsqcup to make the string longer during the computation.

"Physical" Interpretations

- The tape: computer memory and registers.
- Except that the tape can be lengthened on demand.
- δ : program.
- K : instruction numbers.
- s : "main()" in C.
- Σ : alphabet much like the ASCII code.

Program Count

- A program has a finite size.
- Recall that $\delta: K \times \Sigma \rightarrow(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$.
- So $|K| \times|\Sigma|$ "lines" suffice to specify a program, one line per pair from $K \times \Sigma(|x|$ denotes the length of $x)$.
- Given K and Σ, there are

$$
((|K|+3) \times|\Sigma| \times 3)^{|K| \times|\Sigma|}
$$

possible δ 's (see next page).

- This is a constant - albeit large.

The Halting of a TM

- A TM M may halt in three cases.
"yes": M accepts its input x, and $M(x)=$ "yes". "no": M rejects its input x, and $M(x)=$ "no". $h: M(x)=y$ means the string (tape) consists of a \triangleright, followed by a finite string y, whose last symbol is not \bigsqcup, followed by a string of \lfloor s.
$-y$ is the output of the computation.
- y may be empty denoted by ϵ.
- If M never halts on x, then write $M(x)=\nearrow$.

Why TMs?

- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
- One can conceivably develop a complexity theory based on something similar to C++ or Java, say.
- But the added complexity does not yield additional fundamental insights.
- We will describe TMs in pseudocode.

Remarks

- A problem is computable if there is a TM that halts with the correct answer.
- If a TM (i.e., program) does not always halt, it does not solve a computable problem. ${ }^{\text {a }}$
- A computation model should be "physically" realizable.
${ }^{\text {a Contributed by Ms. Amy Liu (J94922016) on May 15, 2006. Control- }}$ C is not a legitimate way to halt a program.

Remarks (concluded)

- Although a TM requires a tape of infinite length, which is not realizable, it is not a major conceptual problem. ${ }^{\text {a }}$
- Imagine you are living next to a paper mill, while carrying out the TM program using pencil and paper.
- The mill will produce extra paper if needed.
${ }^{\text {a}}$ Thanks to a lively discussion on September 20, 2006.

The Concept of Configuration

- A configuration is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
- What does your PC save before it sleeps?
- Enough for it to resume work later.
- Similar to the concept of state in Markov process.

Configurations (concluded)

- A configuration is a triple (q, w, u) :
$-q \in K$.
$-w \in \Sigma^{*}$ is the string to the left of the cursor (inclusive).
$-u \in \Sigma^{*}$ is the string to the right of the cursor.
- Note that (w, u) describes both the string and the cursor position.

- $w=\triangleright 1000110000$.
- $u=111001110001110$.

Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ in one step,

$$
(q, w, u) \xrightarrow{M}\left(q^{\prime}, w^{\prime}, u^{\prime}\right),
$$

if a step of M from configuration (q, w, u) results in configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.

- $(q, w, u) \xrightarrow{M^{k}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$: Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$ in $k \in \mathbb{N}$ steps.
- $(q, w, u) \xrightarrow{M^{*}}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$: Configuration (q, w, u) yields configuration $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$.

Example: How To Insert a Symbol

- We want to compute $f(x)=a x$.
- The TM moves the last symbol of x to the right by one position.
- It then moves the next to last symbol to the right, and so on.
- The TM finally writes a in the first position.
- The total number of steps is $O(n)$, where n is the length of x.

Palindromes

- A string is a palindrome if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes:
- It matches the first character with the last character.
- It matches the second character with the next to last character, etc. (see next page).
- "yes" for palindromes and "no" for nonpalindromes.
- This program takes $O\left(n^{2}\right)$ steps.
- We cannot do better. ${ }^{\text {a }}$

[^4]

Comments on Lower-Bound Proofs

- They are usually difficult.
- Worthy of a Ph.D. degree.
- An algorithm whose running time matches a lower bound means it is optimal.
- The simple $O\left(n^{2}\right)$ algorithm for PALINDROME is optimal.
- This happens rarely and is model dependent.
- Searching, sorting, PALINDROME, matrix-vector multiplication, etc.

[^0]: a " A] science concentrator [...] said that in his eighth semester of [Harvard] college, there was not a single science professor who could identify him by name." (New York Times, September 3, 2003.)

[^1]: ${ }^{\text {a }}$ Size of depth-3 circuits to compute the majority function (Wolfovitz (2006)).

[^2]: ${ }^{\text {a }}$ Nick Lane, Power, Sex, Suicide: Mitochondria and the Meaning of Life (2005).

[^3]: ${ }^{a}$ Muhammad ibn Mūsā Al-Khwārizmi (780-850).

[^4]: ${ }^{a}$ Hennie (1965).

