Theory of Computation

Final Examination on January 12, 2010
Problem 1 (25 points). Let p be a prime and $m \in \Phi(p)$ have exponent k modulo p. Prove that $k \mid p-1$.

Proof. Suppose $k \nmid p-1$ for contradiction. Let $p-1=q k+a$ for $0<a<k$.
Then $m^{a}=m^{q k+a}=m^{p-1}=1 \bmod p$ (where the last equality is Fermat's little theorem), a contradiction to the premise that k is the exponent of m.

Problem 2 (25 points). Suppose x_{1}, \ldots, x_{n} are independent random variables taking the values 1 and 0 with probabilities p and $1-p$, respectively.
Let $t>0$ and $X=\sum_{i=1}^{n} x_{i}$. Show that

$$
\operatorname{prob}[X \geq 2 p n] \leq \frac{\prod_{i=1}^{n} E\left[e^{t x_{i}}\right]}{e^{2 t p n}}
$$

You may want to use the fact

$$
\operatorname{prob}[X \geq 2 p n]=\operatorname{prob}\left[e^{t X} \geq e^{2 t p n}\right]
$$

Proof. By Markov's inequality,

$$
\operatorname{prob}\left[e^{t X} \geq e^{2 t p n}\right] \leq \frac{E\left[e^{t X}\right]}{e^{2 t p n}}
$$

As the x_{i} 's are independent,

$$
E\left[e^{t X}\right]=\prod_{i=1}^{n} E\left[e^{t x_{i}}\right]
$$

So

$$
\operatorname{prob}[X \geq 2 p n]=\operatorname{prob}\left[e^{t X} \geq e^{2 t p n}\right] \leq \frac{E\left[e^{t X}\right]}{e^{2 t p n}}=\frac{\prod_{i=1}^{n} E\left[e^{t x_{i}}\right]}{e^{2 t p n}}
$$

Problem 3 (25 points). Let A be a deterministic polynomial-time algorithm such that (1) for each prime p and primitive root g of p,

$$
\left|\left\{x: x \in\{0,1, \ldots, p-2\}, A\left(p, g, g^{x}\right)=x\right\}\right| \geq \frac{p-1}{2}
$$

and (2) for each $x \in\{0,1, \ldots, p-2\}$ with $A\left(p, g, g^{x}\right) \neq x, A\left(p, g, g^{x}\right)=$ "fail." That is, A solves the discrete logarithm problem for at least half of the exponents and reports failure whenever it fails to solve the discrete logarithm problem. Find a randomized polynomial-time algorithm B that solves the discrete logarithm problem with probability at least $1 / 2$. In other words, given any prime p, primitive root g of p and $g^{x} \bmod p$ for any $x \in$ $\{0,1, \ldots, p-2\}, B$ outputs x with probability at least $1 / 2$.

Proof. Given a prime p, a primitive root g of p and $g^{x} \bmod p, B$ finds $y=$ $A\left(p, g, g^{x+r}\right)$ where r is uniformly distributed over $\{0, \ldots, p-2\}$. If $y \neq$ "fail", then B outputs $y-r \bmod p-1$. Note that $y \neq$ "fail" means $g^{y}=g^{x+r} \bmod p$, which together with $g^{p-1}=1 \bmod p$ gives $g^{y-r \bmod p-1}=g^{x} \bmod p$. So B correctly breaks discrete logarithm when $y \neq$ "fail," which happens with probability at least $1 / 2$.

Calculating $g^{x+r} \bmod p$ from $g^{x} \bmod p$ takes polynomial time by the method of recursive doubling. Simulating A also takes polynomial time. So B is a randomized polynomial-time algorithm.

Problem 4 (25 points). Let $\Phi=\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ be a set of Boolean expressions in n variables. For $1 \leq i \leq m$, assume that ϕ_{i} involves exactly k variables and is satisfied by exactly one of the 2^{k} truth assignments to the k variables. Show that there exists a truth assignment T satisfying at least $\sum_{i=1}^{m} 1 / 2^{k}$ expressions in Φ.

Proof. A random truth assignment satisfies ϕ_{i} with probability $1 / 2^{k}$ for $1 \leq$ $i \leq m$. Hence it satisfies an expected $\sum_{i=1}^{m} 1 / 2^{k}$ expressions in Φ. So there must be a truth assignment satisfying at least $\sum_{i=1}^{m} 1 / 2^{k}$ expressions in Φ.

