Theory of Computation

Final Examination on January 12, 2010

Problem 1 (25 points). Let p be a prime and $m \in \Phi(p)$ have exponent k modulo p. Prove that $k \mid p - 1$.

Proof. Suppose $k \not| p - 1$ for contradiction. Let p - 1 = qk + a for 0 < a < k. Then $m^a = m^{qk+a} = m^{p-1} = 1 \mod p$ (where the last equality is Fermat's little theorem), a contradiction to the premise that k is the exponent of m.

Problem 2 (25 points). Suppose x_1, \ldots, x_n are independent random variables taking the values 1 and 0 with probabilities p and 1 - p, respectively. Let t > 0 and $X = \sum_{i=1}^{n} x_i$. Show that

$$\operatorname{prob}\left[X \ge 2pn\right] \le \frac{\prod_{i=1}^{n} E\left[e^{tx_i}\right]}{e^{2tpn}}.$$

You may want to use the fact

$$\operatorname{prob}\left[X \ge 2pn\right] = \operatorname{prob}\left[e^{tX} \ge e^{2tpn}\right].$$

Proof. By Markov's inequality,

$$\operatorname{prob}\left[e^{tX} \ge e^{2tpn}\right] \le \frac{E\left[e^{tX}\right]}{e^{2tpn}}.$$

As the x_i 's are independent,

$$E\left[e^{tX}\right] = \prod_{i=1}^{n} E\left[e^{tx_i}\right].$$

So

$$\operatorname{prob}\left[X \ge 2pn\right] = \operatorname{prob}\left[e^{tX} \ge e^{2tpn}\right] \le \frac{E\left[e^{tX}\right]}{e^{2tpn}} = \frac{\prod_{i=1}^{n} E\left[e^{tx_i}\right]}{e^{2tpn}}$$

Problem 3 (25 points). Let A be a deterministic polynomial-time algorithm such that (1) for each prime p and primitive root g of p,

$$|\{x: x \in \{0, 1, \dots, p-2\}, A(p, g, g^x) = x\}| \ge \frac{p-1}{2},$$

and (2) for each $x \in \{0, 1, ..., p-2\}$ with $A(p, g, g^x) \neq x$, $A(p, g, g^x) =$ "fail." That is, A solves the discrete logarithm problem for at least half of the exponents and reports failure whenever it fails to solve the discrete logarithm problem. Find a randomized polynomial-time algorithm B that solves the discrete logarithm problem with probability at least 1/2. In other words, given any prime p, primitive root g of p and $g^x \mod p$ for any $x \in$ $\{0, 1, \ldots, p-2\}$, B outputs x with probability at least 1/2.

Proof. Given a prime p, a primitive root g of p and $g^x \mod p$, B finds $y = A(p, g, g^{x+r})$ where r is uniformly distributed over $\{0, \ldots, p-2\}$. If $y \neq$ "fail", then B outputs $y-r \mod p-1$. Note that $y \neq$ "fail" means $g^y = g^{x+r} \mod p$, which together with $g^{p-1} = 1 \mod p$ gives $g^{y-r \mod p-1} = g^x \mod p$. So B correctly breaks discrete logarithm when $y \neq$ "fail," which happens with probability at least 1/2.

Calculating $g^{x+r} \mod p$ from $g^x \mod p$ takes polynomial time by the method of recursive doubling. Simulating A also takes polynomial time. So B is a randomized polynomial-time algorithm.

Problem 4 (25 points). Let $\Phi = \{\phi_1, \ldots, \phi_m\}$ be a set of Boolean expressions in *n* variables. For $1 \leq i \leq m$, assume that ϕ_i involves exactly *k* variables and is satisfied by exactly one of the 2^k truth assignments to the *k* variables. Show that there exists a truth assignment *T* satisfying at least $\sum_{i=1}^{m} 1/2^k$ expressions in Φ .

Proof. A random truth assignment satisfies ϕ_i with probability $1/2^k$ for $1 \leq i \leq m$. Hence it satisfies an expected $\sum_{i=1}^m 1/2^k$ expressions in Φ . So there must be a truth assignment satisfying at least $\sum_{i=1}^m 1/2^k$ expressions in Φ .