Theory of Computation

Solutions to Homework 5

Problem 1. Let A, B be finite nonempty sets, $f: A \times B \rightarrow\{0,1\}$ and $\sum_{y \in B} f(x, y)<|B| /|A|$ for all $x \in A$. Prove the existence of a $y^{*} \in B$ with $\sum_{x \in A} f\left(x, y^{*}\right)=0$. You may want to use the fact

$$
\sum_{x \in A} \sum_{y \in B} f(x, y)=\sum_{y \in B} \sum_{x \in A} f(x, y) .
$$

Proof. As $\sum_{y \in B} f(x, y)<|B| /|A|$ for $x \in A$,

$$
\begin{equation*}
\sum_{x \in A} \sum_{y \in B} f(x, y)<\sum_{x \in A} \frac{|B|}{|A|}=|B| . \tag{1}
\end{equation*}
$$

Suppose for contradiction that

$$
\sum_{x \in A} f(x, y) \geq 1
$$

for all $y \in B$. Then

$$
\sum_{y \in B} \sum_{x \in A} f(x, y) \geq \sum_{y \in B} 1=|B|,
$$

contradicting inequality (1).
Problem 2. Does IP contain all languages that have uniformly polynomial circuits?

Proof. Yes. P equals the class of languages with uniformly polynomial circuits. Furthermore, any language in P can be decided by an interactive proof system where the verifier simply decides the language itself and ignores the prover's messages. So $\mathrm{P} \subseteq$ IP.

