Alexander Razborov (1963-)

The Proof

- Fix $k=n^{1 / 4}$.
- Fix $\ell=n^{1 / 8}$.
- Note that ${ }^{a}$

$$
2\binom{\ell}{2} \leq k-1
$$

- p will be fixed later to be $n^{1 / 8} \log n$.
- Fix $M=(p-1)^{\ell} \ell$!.
- Recall the Erdős-Rado lemma (p. 704).
${ }^{\text {a }}$ Corrected by Mr. Moustapha Bande (D98922042) on January 05, 2010.

The Proof (continued)

- Each crude circuit used in the approximation process is of the form $\operatorname{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, where:
- $X_{i} \subseteq V$.
$-\left|X_{i}\right| \leq \ell$.
- $m \leq M$.
- It answers true if any X_{i} is a clique.
- We shall show how to approximate any circuit for CLIQUE $_{n, k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
- Input gate $g_{i j}$ is the crude circuit $\mathrm{CC}(\{i, j\})$.

The Proof (continued)

- Any monotone circuit can be considered the or or And of two subcircuits.
- We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
- We are given two crude circuits $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.
$-\mathcal{X}$ and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
- We construct the approximate or and the approximate AND of these subcircuits.
- Then show both approximations introduce few errors.

The Proof: Positive Examples

- Error analysis will be applied to only positive examples and negative examples.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from CLIQUE $_{n, k}$.

The Proof: Negative Examples

- Color the nodes with $k-1$ different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^{n}$ such graphs.
- They all should elicit a false output from CLIQUE $_{n, k}$.
- Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.

Positive and Negative Examples with $k=5$

A positive example

A negative example

The Proof: OR

- $\operatorname{CC}(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.
- Violations occur when $|\mathcal{X} \cup \mathcal{Y}|>M$.
- Such violations can be eliminated by using

$$
\mathrm{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))
$$

as the approximate or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.

- Note that if $\operatorname{CC}(\mathcal{Z})$ is true, then $\operatorname{CC}(\operatorname{pluck}(\mathcal{Z}))$ must be true (recall p. 702).
- We now count the number of errors this approximate or makes on the positive and negative examples.

The Proof: OR (concluded)

- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return false but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $\operatorname{CC}(\mathcal{X})$ or $\operatorname{CC}(\mathcal{Y})$ return true but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- How many false positives and false negatives are introduced by $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$?

The Number of False Positives

Lemma $88 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces at most $\frac{M}{p-1} 2^{-p}(k-1)^{n}$ false positives.

- A plucking replaces the sunflower $\left\{Z_{1}, Z_{2}, \ldots, Z_{p}\right\}$ with its core Z.
- A false positive is necessarily a coloring such that:
- There is a pair of identically colored nodes in each petal Z_{i} (and so both crude circuits return false).
- But the core contains distinctly colored nodes. * This implies at least one node from each same-color pair was plucked away.
- We now count the number of such colorings.

Proof of Lemma 88 (continued)

Proof of Lemma 88 (continued)

- Color nodes V at random with $k-1$ colors and let $R(X)$ denote the event that there are repeated colors in set X.
- Now $\operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \wedge \neg R(Z)\right]$ is at most

$$
\begin{align*}
& \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \mid \neg R(Z)\right] \\
= & \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right) \mid \neg R(Z)\right] \leq \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right)\right] . \tag{12}
\end{align*}
$$

- First equality holds because $R\left(Z_{i}\right)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_{i} decreases given no repetitions in $Z \subseteq Z_{i}$.

Proof of Lemma 88 (continued)

- Consider two nodes in Z_{i}.
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now $\operatorname{prob}\left[R\left(Z_{i}\right)\right] \leq \frac{\left(\begin{array}{l}\left|Z_{i}\right|\end{array}\right)}{k-1} \leq \frac{\binom{e}{2}}{k-1} \leq \frac{1}{2}$.
- So the probability ${ }^{\text {a }}$ that a random coloring is a new false positive is at most 2^{-p} by inequality (12).
- As there are $(k-1)^{n}$ different colorings, each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives.

[^0]
Proof of Lemma 88 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2 M$.
- Each plucking reduces the number of sets by $p-1$.
- Hence at most $\frac{M}{p-1}$ pluckings occur in $\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$
\frac{M}{p-1} 2^{-p}(k-1)^{n}
$$

false positives are introduced. ${ }^{a}$

[^1]
The Number of False Negatives

Lemma $89 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- Each plucking replaces a set in a crude circuit by a subset.
- This makes the test less stringent.
- For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \operatorname{pluck}(\mathcal{X} \cup \mathcal{Y})$ such that $X \subseteq Y$.
- So if Y is a clique, then this X is also a clique.
- So plucking can only increase the number of accepted graphs.

The Number of False Negatives (concluded)

The Proof: AND

- The approximate And of crude circuits $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ is

$$
\operatorname{CC}\left(\operatorname{pluck}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)\right) .
$$

- Note that if $\operatorname{CC}(\mathcal{Z})$ is true, then $\operatorname{CC}(\operatorname{pluck}(\mathcal{Z}))$ must be true.
- We now count the number of errors this approximate AND makes on the positive and negative examples.

The Proof: AND (concluded)

- The approximate AND introduces a false positive if a negative example makes either $\operatorname{CC}(\mathcal{X})$ or $\operatorname{CC}(\mathcal{Y})$ return false but makes the approximate and return true.
- The approximate AND introduces a false negative if a positive example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true but makes the approximate and return false.
- How many false positives and false negatives are introduced by the approximate AND?

The Number of False Positives

Lemma 90 The approximate and introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives.
- If $X_{i} \cup Y_{j}$ is a clique, both X_{i} and Y_{j} must be cliques, making both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true.
- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces no false positives as we are testing fewer sets for cliques.

Proof of Lemma 90 (concluded)

- $\left|\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right| \leq M^{2}$.
- Each plucking reduces the number of sets by $p-1$.
- $\operatorname{So} \operatorname{pluck}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ involves $\leq M^{2} /(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives by the proof of Lemma 88 (p. 719).
- The desired upper bound is

$$
\left[M^{2} /(p-1)\right] 2^{-p}(k-1)^{n} \leq M^{2} 2^{-p}(k-1)^{n} .
$$

The Number of False Negatives

Lemma 91 The approximate AND introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We follow the same three-step proof as before.
- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false negatives.
- Suppose both $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ accept a positive example with a clique of size k.
- This clique must contain an $X_{i} \in \mathcal{X}$ and a $Y_{j} \in \mathcal{Y}$. * This is why both $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ return true.
- As the clique contains $X_{i} \cup Y_{j}$, the new circuit returns true.

Proof of Lemma 91 (continued)

Proof of Lemma 91 (concluded)

- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces $\leq M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- Deletion of set $Z=X_{i} \cup Y_{j}$ larger than ℓ introduces false negatives only if the clique contains Z.
- There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
* It is the number of positive examples whose clique contains Z.
$-\binom{n-|Z|}{k-|Z|} \leq\binom{ n-\ell-1}{k-\ell-1}$ as $|Z|>\ell$.
- There are at most M^{2} such $Z \mathrm{~s}$.
- Plucking introduces no false negatives.

Two Summarizing Lemmas

From Lemmas 88 (p. 719) and 90 (p. 728), we have:
Lemma 92 Each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

From Lemmas 89 (p. 724) and 91 (p. 730), we have:
Lemma 93 Each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduces "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 94 Every final crude circuit is:

1. Identically false-thus wrong on all positive examples.
2. Or outputs true on at least half of the negative examples.

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1 / 8}$ is less than $k=n^{1 / 4}$.
- The proof of Lemma 88 (p. 719ff) shows that at least half of the colorings assign different colors to nodes in X.
- So half of the negative examples have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 711: $k=n^{1 / 4}, \ell=n^{1 / 8}$, $p=n^{1 / 8} \log n, M=(p-1)^{\ell} \ell!<n^{(1 / 3) n^{1 / 8}}$ for large n.
- Suppose the final crude circuit is identically false.
- By Lemma 93 (p. 733), each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- There are ($\left.\begin{array}{l}n \\ k\end{array}\right)$ positive examples.
- The original crude circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{\binom{n}{k}}{M^{2}\binom{n-\ell-1}{k-\ell-1}} \geq \frac{1}{M^{2}}\left(\frac{n-\ell}{k}\right)^{\ell} \geq n^{(1 / 12) n^{1 / 8}}
$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
- Lemma 94 (p. 735) says that there are at least $(k-1)^{n} / 2$ false positives.
- By Lemma 92 (p. 733), each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.
- The original crude circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{(k-1)^{n} / 2}{M^{2} 2^{-p}(k-1)^{n}}=\frac{2^{p-1}}{M^{2}} \geq n^{(1 / 3) n^{1 / 8}}
$$

gates.

$P \neq$ NP Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $\mathrm{P} \neq \mathrm{NP}$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

Computation That Counts

Counting Problems

- Counting problems are concerned with the number of solutions.
- \#sAT: the number of satisfying truth assignments to a boolean formula.
- \#hamiltonian path: the number of Hamiltonian paths in a graph.
- They cannot be easier than their decision versions.
- The decision problem has a solution if and only if the solution count is larger than 0 .
- But they can be harder than their decision versions.

Decision and Counting Problems

- FP is the set of polynomial-time computable functions $f:\{0,1\}^{*} \rightarrow \mathbb{Z}$.
- GCD, LCM, matrix-matrix multiplication, etc.
- If $\#$ sat $\in F P$, then $P=N P$.
- Given boolean formula ϕ, calculate its number of satisfying truth assignments, k, in polynomial time.
- Declare " $\phi \in \mathrm{SAT}$ " if and only if $k \geq 1$.
- The validity of the reverse direction is open.

A Counting Problem Harder than Its Decision Version

- Cycle asks if a directed graph contains a cycle.
- \#cycle counts the number of cycles in a directed graph.
- CyCLE is in P by a simple greedy algorithm.
- But \#cycle is hard unless $\mathrm{P}=\mathrm{NP}$.

Counting Class \#P

A function f is in $\# \mathrm{P}($ or $f \in \# \mathrm{P}$) if

- There exists a polynomial-time NTM M.
- $M(x)$ has $f(x)$ accepting paths for all inputs x.
- $f(x)=$ number of accepting paths of $M(x)$.

Some \#P Problems

- $f(\phi)=$ number of satisfying truth assignments to ϕ.
- The desired NTM guesses a truth assignment T and accepts ϕ if and only if $T \models \phi$.
- Hence $f \in \#$ P.
- f is also called \#sat.
- \#hamiltonian Path.
- \#3-COLORING.

\# P Completeness

- Function f is \#P-complete if
$-f \in \# \mathrm{P}$.
$-\# \mathrm{P} \subseteq \mathrm{FP}^{f}$.
* Every function in \#P can be computed in polynomial time with access to a black box ${ }^{\text {a }}$ or oracle for f.
- Of course, oracle f will be accessed only a polynomial number of times.
- \#P is said to be polynomial-time Turing-reducible to f.
${ }^{\text {a }}$ Think of it as a subroutine

\#sat Is \#P-Complete ${ }^{\text {a }}$

- First, it is in \#P (p. 744).
- Let $f \in \# \mathrm{P}$ compute the number of accepting paths of M.
- Cook's theorem uses a parsimonious reduction from M on input x to an instance ϕ of SAT (p. 273).
- Hence the number of accepting paths of $M(x)$ equals the number of satisfying truth assignments to ϕ.
- Call the oracle \#sat with ϕ to obtain the desired answer regarding $f(x)$.
${ }^{\text {a }}$ Valiant (1979); in fact, \#2sat is also \#P-complete.

Leslie G. Valiant (1949-)

Avi Wigderson (2009), "Les Valiant singlehandedly created, or completely transformed, several fundamental research areas of computer science. [$\cdots]$ We all became addicted to this remarkable throughput, and expect more."

CYCLE COVER

- A set of node-disjoint cycles that cover all nodes in a directed graph is called a cycle cover.

- There are 3 cycle covers (in red) above.

CYCLE COVER and BIPARTITE PERFECT MATCHING

Proposition 95 CYCLE COVER and BIPARTITE PERFECT MATCHING ($p .440$) are parsimoniously reducible to each other.

- A polynomial-time algorithm creates a bipartite graph G^{\prime} from any directed graph G.
- Moreover, the number cycle covers for G equals the number of bipartite perfect matchings for G^{\prime}.
- And vice versa.

Corollary 96 CYCLE COVER $\in P$.

Permanent

- The permanent of an $n \times n$ integer matrix A is

$$
\operatorname{perm}(A)=\sum_{\pi} \prod_{i=1}^{n} A_{i, \pi(i)}
$$

- π ranges over all permutations of n elements.
- $0 / 1$ Permanent computes the permanent of a $0 / 1$ (binary) matrix.
- The permanent of a binary matrix is at most $n!$.
- Simpler than determinant (5) on p. 443: no signs.
- Surprisingly, much harder to compute than determinant!

Permanent and Counting Perfect Matchings

- BIPARTITE PERFECT MATCHING is related to determinant (p. 444).
- \#Bipartite perfect matching is related to permanent.

Proposition 97 0/1 PERMANENT and BIPARTITE PERFECT MATCHING are parsimoniously reducible to each other.

The Proof

- Given a bipartite graph G, construct an $n \times n$ binary matrix A.
- The (i, j) th entry $A_{i j}$ is 1 if $(i, j) \in E$ and 0 otherwise.
- Then $\operatorname{perm}(A)=$ number of perfect matchings in G.

Illustration of the Proof Based on p. 750 (Left)

$$
A=\left[\begin{array}{ccccc}
0 & 0 & 1 & \boxed{1} & 0 \\
0 & \boxed{1} & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & \boxed{1} \\
1 & 0 & \boxed{1} & 1 & 0 \\
\boxed{1} & 0 & 0 & 0 & 1
\end{array}\right]
$$

- $\operatorname{perm}(A)=4$.
- The permutation corresponding to the perfect matching on p. 750 is marked.

Permanent and Counting Cycle Covers

Proposition 98 0/1 Permanent and Cycle cover are parsimoniously reducible to each other.

- Let A be the adjacency matrix of the graph on p. 750 (right).
- Then $\operatorname{perm}(A)=$ number of cycle covers.

Three Parsimoniously Equivalent Problems

We summarize Propositions 95 (p. 749) and 97 (p. 752) in the following.

Lemma 99 0/1 PERMANENT, BIPARTITE PERFECT mATCHING, and CYCLE COVER are parsimoniously equivalent.

We will show that the counting versions of all three problems are in fact \#P-complete.

WEIGHTED CYCLE COVER

- Consider a directed graph G with integer weights on the edges.
- The weight of a cycle cover is the product of its edge weights.
- The cycle count of G is sum of the weights of all cycle covers.
- Let A be G 's adjacency matrix but $A_{i j}=w_{i}$ if the edge (i, j) has weight w_{i}.
- Then $\operatorname{perm}(A)=G$'s cycle count (same proof as Proposition 98 on p. 755).
- \#CyCle cover is a special case: All weights are 1.

An Example ${ }^{\text {a }}$

There are 3 cycle covers, and the cycle count is

$$
(4 \cdot 1 \cdot 1) \cdot(1)+(1 \cdot 1) \cdot(2 \cdot 3)+(4 \cdot 2 \cdot 1 \cdot 1)=18 .
$$

[^2]
Three \#P-Complete Counting Problems

 Theorem 100 (Valiant (1979)) 0/1 permanent, \#BIPARTITE PERFECT MATCHING, and \#CYCLE COVER are \#P-complete.- By Lemma 99 (p. 756), it suffices to prove that \#CYCLE COVER is \#P-complete.
- \#sat is \#P-complete (p. 746).
- \#3sat is \#P-complete because it and \#sat are parsimoniously equivalent (p. 277).
- We shall prove that \#3sAT is polynomial-time Turing-reducible to \#cycle cover.

The Proof (continued)

- Let ϕ be the given 3sAT formula.
- It contains n variables and m clauses (hence $3 m$ literals).
- It has \# ϕ satisfying truth assignments.
- First we construct a weighted directed graph H with cycle count

$$
\# H=4^{3 m} \times \# \phi .
$$

- Then we construct an unweighted directed graph G.
- We make sure $\# H$ (hence $\# \phi$) is polynomial-time Turing-reducible to G's number of cycle covers (denoted $\# G)$.

The Proof: the Clause Gadget (continued)

- Each clause is associated with a clause gadget.

- Each edge has weight 1 unless stated otherwise.
- Each bold edge corresponds to one literal in the clause.
- There are not parallel lines as bold edges are schematic only (preview p. 774).

The Proof: the Clause Gadget (continued)

- Following a bold edge means making the literal false (0).
- A cycle cover cannot select all 3 bold edges.
- The interior node would be missing.
- Every proper nonempty subset of bold edges corresponds to a unique cycle cover of weight 1 (see next page).

The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment: (1) $a=0, b=0, c=1$, (2) $a=0, b=1, c=0$, etc.

The Proof: the XOR Gadget (continued)

The Proof: Properties of the XOR Gadget (continued)

- The XOR gadget schema:

- At most one of the 2 schematic edges will be included in a cycle cover.
- There will be $3 m$ XOR gadgets, one for each literal.

The Proof: Properties of the XOR Gadget (continued)
Total weight of $-1-2+6-3=0$ for cycle covers not entering or leaving it.

The Proof: Properties of the XOR Gadget (continued)

- Total weight of $-1+1-6+2+3+1=0$ for cycle covers entering at u and leaving at v^{\prime}. ${ }^{\text {a }}$

- Same for cycle covers entering at v and leaving at u^{\prime}.
${ }^{\text {a }}$ Corrected by Mr. Yu-Tsung Dai (B91201046) and Mr. Che-Wei Chang (R95922093) on December 27, 2006.

The Proof: Properties of the XOR Gadget (continued)

- Total weight of $1+2+2-1+1-1=4$ for cycle covers entering at u and leaving at u^{\prime}.

- Same for cycle covers entering at v and leaving at v^{\prime}.

The Proof: Summary (continued)

- Cycle covers not entering all of the XOR gadgets contribute 0 to the cycle count.
- Let x denote an XOR gadget not entered for a cycle cover c.
- Now, the said cycle covers' total contribution is
$=\sum_{\text {cycle cover } c \text { for } H}$ weight (c)
$=\sum_{\text {cycle cover } c \text { for } H-x} \quad \sum_{\text {cycle cover } c \text { for } H-x} \sum_{\text {cycle cover } c \text { for } x} \operatorname{weight}(c)$
$=0$

The Proof: Summary (continued)

- Cycle covers entering any of the XOR gadgets and leaving illegally contribute 0 to the cycle count.
- For every XOR gadget entered and exited legally, the total weight of a cycle cover is multiplied by 4.
- With an XOR gadget x entered and exited legally fixed,
contributions of such cycle covers to the cycle count

$\begin{array}{ll}= & \sum_{\text {cycle cover } c \text { for } H-x} \operatorname{weight}(c) \sum_{\text {cycle cover } c \text { for } x} \operatorname{weight}(c) \\ =\sum_{\text {cycle cover } c \text { for } H-x} \operatorname{weight}(c) \cdot 4 .\end{array}$

The Proof: Summary (continued)

- Hereafter we consider only cycle covers which enter every XOR gadget and leaves it legally.
- Only these cycle covers contribute nonzero weights to the cycle count.
- They are said to respect the XOR gadgets.

The Proof: the Choice Gadget (continued)

- One choice gadget (a schema) for each variable.

- It gives the truth assignment for the variable.
- Use it with the XOR gadget to enforce consistency.

Full Graph $(w \vee x \vee \bar{y}) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

The Proof: a Key Observation (continued)
Each satisfying truth assignment to ϕ corresponds to a schematic cycle cover that respects the XOR gadgets.

$$
w=1, x=0, y=0, z=1 \Leftrightarrow \text { One Cycle Cover }
$$

The Proof: a Key Corollary (continued)

- Recall that there are $3 m$ XOR gadgets.
- Each satisfying truth assignment to ϕ contributes $4^{3 m}$ to the cycle count $\# H$.
- Hence

$$
\# H=4^{3 m} \times \# \phi,
$$

as desired.

The Proof (continued)

- We are almost done.
- The weighted directed graph H needs to be efficiently replaced by some unweighted graph G.
- Furthermore, knowing $\# G$ should enable us to calculate \#H efficiently.
- This done, $\# \phi$ will have been Turing-reducible to $\# G$. ${ }^{\text {a }}$
- We proceed to construct this graph G.
${ }^{\text {a }}$ By way of $\# H$ of course.

The Proof: Construction of G (continued)

- Replace edges with weights 2 and 3 as follows (note that the graph cannot have parallel edges):

- The cycle count \#H remains unchanged.

The Proof: Construction of G (continued)

- We move on to edges with weight -1 .
- First, we count the number of nodes, M.
- Each clause gadget contains 4 nodes (p. 761), and there are m of them (one per clause).
- Each revised XOR gadget contains 7 nodes (p. 780), and there are $3 m$ of them (one per literal).
- Each choice gadget contains 2 nodes (p. 772), and there are $n \leq 3 m$ of them (one per variable).
- So

$$
M \leq 4 m+21 m+6 m=31 m
$$

The Proof: Construction of G (continued)

- $\# H \leq 2^{L}$ for some $L=O(m \log m)$.
- The maximum absolute value of the edge weight is 1 .
- Hence each term in the permanent is at most 1.
- There are $M!\leq(31 m)$! terms.
- Hence

$$
\begin{align*}
\# H & \leq \sqrt{2 \pi(31 m)}\left(\frac{31 m}{e}\right)^{31 m} e^{\frac{1}{12 \times(31 m)}} \\
& =2^{O(m \log m)} \tag{13}
\end{align*}
$$

by a refined Stirling's formula.

The Proof: Construction of G (continued)

- Replace each edge with weight -1 with the following:

- Each increases the number of cycle covers 2^{L+1}-fold.
- The desired unweighted G has been obtained.

The Proof (continued)

- \#G equals $\# H$ after replacing each appearance -1 in $\# H$ with 2^{L+1} :

$$
\begin{aligned}
& \# H=\cdots+\overbrace{1 \cdot 1 \cdots(-1) \cdots 1}^{\text {a cycle cover }}+\cdots, \\
& \# G=\cdots+\overbrace{1 \cdot 1 \cdots 2^{L+1} \cdots 1}^{\text {a cycle cover }}+\cdots .
\end{aligned}
$$

- Let $\# G=\sum_{i=0}^{n} a_{i} \times\left(2^{L+1}\right)^{i}$, where $0 \leq a_{i}<2^{L+1}$.
- Recall that $\# H \leq 2^{L}$ (p. 782).
- So if we replace -1 by 1 , each a_{i} counts the number of cycle covers with i edges of weight -1 as there is no "overflow."

The Proof (concluded)

- We conclude that

$$
\# H=a_{0}-a_{1}+a_{2}-\cdots+(-1)^{n} a_{n}
$$

indeed easily computable from $\# G$.

- We know $\# H=4^{3 m} \times \# \phi($ p. 777).
- So

$$
\# \phi=\frac{a_{0}-a_{1}+a_{2}-\cdots+(-1)^{n} a_{n}}{4^{3 m}}
$$

- Equivalently,

$$
\# \phi=\frac{\# G \bmod \left(2^{L+1}+1\right)}{4^{3 m}}
$$

Finis

[^0]: ${ }^{a}$ Proportion, i.e.

[^1]: ${ }^{\text {a }}$ Note that the numbers of errors are added not multiplied. Recall that we count how many new errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

[^2]: ${ }^{\text {a }}$ Each edge has weight 1 unless stated otherwise.

