
Alexander Razborov (1963–)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 710

The Proof

• Fix k = n1/4.

• Fix ` = n1/8.

• Note thata

2
(

`

2

)
≤ k − 1.

• p will be fixed later to be n1/8 log n.

• Fix M = (p− 1)``!.

– Recall the Erdős-Rado lemma (p. 704).

aCorrected by Mr. Moustapha Bande (D98922042) on January 05,

2010.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 711

The Proof (continued)

• Each crude circuit used in the approximation process is
of the form CC(X1, X2, . . . , Xm), where:

– Xi ⊆ V .

– |Xi| ≤ `.

– m ≤ M .

• It answers true if any Xi is a clique.

• We shall show how to approximate any circuit for
cliquen,k by such a crude circuit, inductively.

• The induction basis is straightforward:

– Input gate gij is the crude circuit CC({i, j}).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 712

The Proof (continued)

• Any monotone circuit can be considered the or or and

of two subcircuits.

• We shall show how to build approximators of the overall
circuit from the approximators of the two subcircuits.

– We are given two crude circuits CC(X) and CC(Y).

– X and Y are two families of at most M sets of nodes,
each set containing at most ` nodes.

– We construct the approximate or and the
approximate and of these subcircuits.

– Then show both approximations introduce few errors.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 713

The Proof: Positive Examples

• Error analysis will be applied to only positive
examples and negative examples.

• A positive example is a graph that has
(
k
2

)
edges

connecting k nodes in all possible ways.

• There are
(
n
k

)
such graphs.

• They all should elicit a true output from cliquen,k.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 714

The Proof: Negative Examples

• Color the nodes with k − 1 different colors and join by
an edge any two nodes that are colored differently.

• There are (k − 1)n such graphs.

• They all should elicit a false output from cliquen,k.

– Each set of k nodes must have 2 identically colored
nodes; hence there is no edge between them.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 715

Positive and Negative Examples with k = 5

$�SRVLWLYH�H[DPSOH $�QHJDWLYH�H[DPSOH

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 716

The Proof: or

• CC(X ∪Y) is equivalent to the or of CC(X) and CC(Y).

• Violations occur when |X ∪ Y| > M .

• Such violations can be eliminated by using

CC(pluck(X ∪ Y))

as the approximate or of CC(X) and CC(Y).

– Note that if CC(Z) is true, then CC(pluck(Z)) must
be true (recall p. 702).

• We now count the number of errors this approximate or

makes on the positive and negative examples.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 717

The Proof: or (concluded)

• CC(pluck(X ∪ Y)) introduces a false positive if a
negative example makes both CC(X) and CC(Y) return
false but makes CC(pluck(X ∪ Y)) return true.

• CC(pluck(X ∪ Y)) introduces a false negative if a
positive example makes either CC(X) or CC(Y) return
true but makes CC(pluck(X ∪ Y)) return false.

• How many false positives and false negatives are
introduced by CC(pluck(X ∪ Y))?

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 718

The Number of False Positives

Lemma 88 CC(pluck(X ∪ Y)) introduces at most
M

p−1 2−p(k − 1)n false positives.

• A plucking replaces the sunflower {Z1, Z2, . . . , Zp} with
its core Z.

• A false positive is necessarily a coloring such that:

– There is a pair of identically colored nodes in each
petal Zi (and so both crude circuits return false).

– But the core contains distinctly colored nodes.

∗ This implies at least one node from each
same-color pair was plucked away.

• We now count the number of such colorings.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 719

Proof of Lemma 88 (continued)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 720

Proof of Lemma 88 (continued)

• Color nodes V at random with k− 1 colors and let R(X)
denote the event that there are repeated colors in set X.

• Now prob[R(Z1) ∧ · · · ∧R(Zp) ∧ ¬R(Z)] is at most

prob[R(Z1) ∧ · · · ∧R(Zp)|¬R(Z)]

=
p∏

i=1

prob[R(Zi)|¬R(Z)] ≤
p∏

i=1

prob[R(Zi)]. (12)

– First equality holds because R(Zi) are independent
given ¬R(Z) as Z contains their only common nodes.

– Last inequality holds as the likelihood of repetitions
in Zi decreases given no repetitions in Z ⊆ Zi.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 721

Proof of Lemma 88 (continued)

• Consider two nodes in Zi.

• The probability that they have identical color is 1
k−1 .

• Now prob[R(Zi)] ≤ (|Zi|
2)

k−1 ≤ (`
2)

k−1 ≤ 1
2 .

• So the probabilitya that a random coloring is a new false
positive is at most 2−p by inequality (12).

• As there are (k − 1)n different colorings, each plucking
introduces at most 2−p(k − 1)n false positives.

aProportion, i.e.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 722

Proof of Lemma 88 (concluded)

• Recall that | X ∪ Y | ≤ 2M .

• Each plucking reduces the number of sets by p− 1.

• Hence at most M
p−1 pluckings occur in pluck(X ∪ Y).

• At most
M

p− 1
2−p(k − 1)n

false positives are introduced.a

aNote that the numbers of errors are added not multiplied. Recall that

we count how many new errors are introduced by each approximation

step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 723

The Number of False Negatives

Lemma 89 CC(pluck(X ∪Y)) introduces no false negatives.

• Each plucking replaces a set in a crude circuit by a
subset.

• This makes the test less stringent.

– For each Y ∈ X ∪ Y, there must exist at least one
X ∈ pluck(X ∪ Y) such that X ⊆ Y .

– So if Y is a clique, then this X is also a clique.

• So plucking can only increase the number of accepted
graphs.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 724

The Number of False Negatives (concluded)

Y

X

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 725

The Proof: and

• The approximate and of crude circuits CC(X) and
CC(Y) is

CC(pluck({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ `})).

– Note that if CC(Z) is true, then CC(pluck(Z)) must
be true.

• We now count the number of errors this approximate
and makes on the positive and negative examples.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 726

The Proof: and (concluded)

• The approximate and introduces a false positive if a
negative example makes either CC(X) or CC(Y) return
false but makes the approximate and return true.

• The approximate and introduces a false negative if a
positive example makes both CC(X) and CC(Y) return
true but makes the approximate and return false.

• How many false positives and false negatives are
introduced by the approximate and?

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 727

The Number of False Positives

Lemma 90 The approximate and introduces at most
M22−p(k − 1)n false positives.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y}) introduces no false
positives.

– If Xi ∪ Yj is a clique, both Xi and Yj must be
cliques, making both CC(X) and CC(Y) return true.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ `}) introduces
no false positives as we are testing fewer sets for cliques.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 728

Proof of Lemma 90 (concluded)

• | {Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ `} | ≤ M2.

• Each plucking reduces the number of sets by p− 1.

• So pluck({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ `})
involves ≤ M2/(p− 1) pluckings.

• Each plucking introduces at most 2−p(k − 1)n false
positives by the proof of Lemma 88 (p. 719).

• The desired upper bound is

[M2/(p− 1)] 2−p(k − 1)n ≤ M22−p(k − 1)n.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 729

The Number of False Negatives

Lemma 91 The approximate and introduces at most
M2

(
n−`−1
k−`−1

)
false negatives.

• We follow the same three-step proof as before.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y}) introduces no false
negatives.

– Suppose both CC(X) and CC(Y) accept a positive
example with a clique of size k.

– This clique must contain an Xi ∈ X and a Yj ∈ Y.
∗ This is why both CC(X) and CC(Y) return true.

– As the clique contains Xi ∪ Yj , the new circuit
returns true.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 730

Proof of Lemma 91 (continued)

Yj Xi

Clique of size k

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 731

Proof of Lemma 91 (concluded)

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ `}) introduces
≤ M2

(
n−`−1
k−`−1

)
false negatives.

– Deletion of set Z = Xi ∪ Yj larger than ` introduces
false negatives only if the clique contains Z.

– There are
(
n−|Z|
k−|Z|

)
such cliques.

∗ It is the number of positive examples whose clique
contains Z.

–
(
n−|Z|
k−|Z|

) ≤ (
n−`−1
k−`−1

)
as |Z| > `.

– There are at most M2 such Zs.

• Plucking introduces no false negatives.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 732

Two Summarizing Lemmas

From Lemmas 88 (p. 719) and 90 (p. 728), we have:

Lemma 92 Each approximation step introduces at most
M22−p(k − 1)n false positives.

From Lemmas 89 (p. 724) and 91 (p. 730), we have:

Lemma 93 Each approximation step introduces at most
M2

(
n−`−1
k−`−1

)
false negatives.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 733

The Proof (continued)

• The above two lemmas show that each approximation
step introduces “few” false positives and false negatives.

• We next show that the resulting crude circuit has “a
lot” of false positives or false negatives.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 734

The Final Crude Circuit

Lemma 94 Every final crude circuit is:

1. Identically false—thus wrong on all positive examples.

2. Or outputs true on at least half of the negative examples.

• Suppose it is not identically false.

• By construction, it accepts at least those graphs that
have a clique on some set X of nodes, with |X | ≤ `,
which at n1/8 is less than k = n1/4.

• The proof of Lemma 88 (p. 719ff) shows that at least
half of the colorings assign different colors to nodes in X.

• So half of the negative examples have a clique in X and
are accepted.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 735

The Proof (continued)

• Recall the constants on p. 711: k = n1/4, ` = n1/8,
p = n1/8 log n, M = (p− 1)``! < n(1/3)n1/8

for large n.

• Suppose the final crude circuit is identically false.

– By Lemma 93 (p. 733), each approximation step
introduces at most M2

(
n−`−1
k−`−1

)
false negatives.

– There are
(
n
k

)
positive examples.

– The original crude circuit for cliquen,k has at least
(
n
k

)

M2
(
n−`−1
k−`−1

) ≥ 1
M2

(
n− `

k

)`

≥ n(1/12)n1/8

gates for large n.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 736

The Proof (concluded)

• Suppose the final crude circuit is not identically false.

– Lemma 94 (p. 735) says that there are at least
(k − 1)n/2 false positives.

– By Lemma 92 (p. 733), each approximation step
introduces at most M22−p(k − 1)n false positives.

– The original crude circuit for cliquen,k has at least

(k − 1)n/2
M22−p(k − 1)n

=
2p−1

M2
≥ n(1/3)n1/8

gates.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 737

P 6= NP Proved?

• Razborov’s theorem says that there is a monotone
language in NP that has no polynomial monotone
circuits.

• If we can prove that all monotone languages in P have
polynomial monotone circuits, then P 6= NP.

• But Razborov proved in 1985 that some monotone
languages in P have no polynomial monotone circuits!

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 738

Computation That Counts

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 739

Counting Problems

• Counting problems are concerned with the number of
solutions.

– #sat: the number of satisfying truth assignments to
a boolean formula.

– #hamiltonian path: the number of Hamiltonian
paths in a graph.

• They cannot be easier than their decision versions.

– The decision problem has a solution if and only if the
solution count is larger than 0.

• But they can be harder than their decision versions.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 740

Decision and Counting Problems

• FP is the set of polynomial-time computable functions
f : {0, 1}∗ → Z.

– GCD, LCM, matrix-matrix multiplication, etc.

• If #sat ∈ FP, then P = NP.

– Given boolean formula φ, calculate its number of
satisfying truth assignments, k, in polynomial time.

– Declare “φ ∈ sat” if and only if k ≥ 1.

• The validity of the reverse direction is open.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 741

A Counting Problem Harder than Its Decision Version

• cycle asks if a directed graph contains a cycle.

• #cycle counts the number of cycles in a directed
graph.

• cycle is in P by a simple greedy algorithm.

• But #cycle is hard unless P = NP.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 742

Counting Class #P

A function f is in #P (or f ∈ #P) if

• There exists a polynomial-time NTM M .

• M(x) has f(x) accepting paths for all inputs x.

• f(x) = number of accepting paths of M(x).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 743

Some #P Problems

• f(φ) = number of satisfying truth assignments to φ.

– The desired NTM guesses a truth assignment T and
accepts φ if and only if T |= φ.

– Hence f ∈ #P.

– f is also called #sat.

• #hamiltonian path.

• #3-coloring.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 744

#P Completeness

• Function f is #P-complete if

– f ∈ #P.

– #P ⊆ FPf .
∗ Every function in #P can be computed in

polynomial time with access to a black boxa or
oracle for f .

– Of course, oracle f will be accessed only a
polynomial number of times.

– #P is said to be polynomial-time
Turing-reducible to f .

aThink of it as a subroutine

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 745

#sat Is #P-Completea

• First, it is in #P (p. 744).

• Let f ∈ #P compute the number of accepting paths of
M .

• Cook’s theorem uses a parsimonious reduction from M

on input x to an instance φ of sat (p. 273).

– Hence the number of accepting paths of M(x) equals
the number of satisfying truth assignments to φ.

• Call the oracle #sat with φ to obtain the desired
answer regarding f(x).

aValiant (1979); in fact, #2sat is also #P-complete.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 746

Leslie G. Valiant (1949–)

Avi Wigderson (2009), “Les Valiant
singlehandedly created, or com-
pletely transformed, several funda-
mental research areas of computer
science. [· · ·] We all became ad-
dicted to this remarkable through-
put, and expect more.”

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 747

cycle cover

• A set of node-disjoint cycles that cover all nodes in a
directed graph is called a cycle cover.

• There are 3 cycle covers (in red) above.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 748

cycle cover and bipartite perfect matching

Proposition 95 cycle cover and bipartite perfect

matching (p. 440) are parsimoniously reducible to each
other.

• A polynomial-time algorithm creates a bipartite graph
G′ from any directed graph G.

• Moreover, the number cycle covers for G equals the
number of bipartite perfect matchings for G′.

• And vice versa.

Corollary 96 cycle cover ∈ P .

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 749

Illustration of the Proof

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

w1

w4w3

w2 w5

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 750

Permanent

• The permanent of an n× n integer matrix A is

perm(A) =
∑

π

n∏

i=1

Ai,π(i).

– π ranges over all permutations of n elements.

• 0/1 permanent computes the permanent of a 0/1
(binary) matrix.

– The permanent of a binary matrix is at most n!.

• Simpler than determinant (5) on p. 443: no signs.

• Surprisingly, much harder to compute than determinant!

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 751

Permanent and Counting Perfect Matchings

• bipartite perfect matching is related to
determinant (p. 444).

• #bipartite perfect matching is related to
permanent.

Proposition 97 0/1 permanent and bipartite perfect

matching are parsimoniously reducible to each other.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 752

The Proof

• Given a bipartite graph G, construct an n× n binary
matrix A.

– The (i, j)th entry Aij is 1 if (i, j) ∈ E and 0
otherwise.

• Then perm(A) = number of perfect matchings in G.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 753

Illustration of the Proof Based on p. 750 (Left)

A =

0 0 1 1 0

0 1 0 0 0

1 0 0 0 1

1 0 1 1 0

1 0 0 0 1

.

• perm(A) = 4.

• The permutation corresponding to the perfect matching
on p. 750 is marked.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 754

Permanent and Counting Cycle Covers

Proposition 98 0/1 permanent and cycle cover are
parsimoniously reducible to each other.

• Let A be the adjacency matrix of the graph on p. 750
(right).

• Then perm(A) = number of cycle covers.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 755

Three Parsimoniously Equivalent Problems

We summarize Propositions 95 (p. 749) and 97 (p. 752) in
the following.

Lemma 99 0/1 permanent, bipartite perfect

matching, and cycle cover are parsimoniously
equivalent.

We will show that the counting versions of all three
problems are in fact #P-complete.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 756

weighted cycle cover

• Consider a directed graph G with integer weights on the
edges.

• The weight of a cycle cover is the product of its edge
weights.

• The cycle count of G is sum of the weights of all cycle
covers.

– Let A be G’s adjacency matrix but Aij = wi if the
edge (i, j) has weight wi.

– Then perm(A) = G’s cycle count (same proof as
Proposition 98 on p. 755).

• #cycle cover is a special case: All weights are 1.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 757

An Examplea

4

4

4

2

3

4

4

4

2

3

4

4

4

2

3

There are 3 cycle covers, and the cycle count is

(4 · 1 · 1) · (1) + (1 · 1) · (2 · 3) + (4 · 2 · 1 · 1) = 18.

aEach edge has weight 1 unless stated otherwise.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 758

Three #P-Complete Counting Problems

Theorem 100 (Valiant (1979)) 0/1 permanent,
#bipartite perfect matching, and #cycle cover are
#P-complete.

• By Lemma 99 (p. 756), it suffices to prove that #cycle

cover is #P-complete.

• #sat is #P-complete (p. 746).

• #3sat is #P-complete because it and #sat are
parsimoniously equivalent (p. 277).

• We shall prove that #3sat is polynomial-time
Turing-reducible to #cycle cover.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 759

The Proof (continued)

• Let φ be the given 3sat formula.

– It contains n variables and m clauses (hence 3m

literals).

– It has #φ satisfying truth assignments.

• First we construct a weighted directed graph H with
cycle count

#H = 43m ×#φ.

• Then we construct an unweighted directed graph G.

• We make sure #H (hence #φ) is polynomial-time
Turing-reducible to G’s number of cycle covers (denoted
#G).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 760

The Proof: the Clause Gadget (continued)

• Each clause is associated with a clause gadget.

a

b

c

• Each edge has weight 1 unless stated otherwise.

• Each bold edge corresponds to one literal in the clause.

• There are not parallel lines as bold edges are schematic
only (preview p. 774).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 761

The Proof: the Clause Gadget (continued)

• Following a bold edge means making the literal false (0).

• A cycle cover cannot select all 3 bold edges.

– The interior node would be missing.

• Every proper nonempty subset of bold edges corresponds
to a unique cycle cover of weight 1 (see next page).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 762

The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:
(1) a = 0, b = 0, c = 1, (2) a = 0, b = 1, c = 0, etc.

(1) (2) (3) (4) (5) (6) (7)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 763

The Proof: the XOR Gadget (continued)

- 1

- 1

- 1

2

3

u

v'

u'

v

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 764

The Proof: Properties of the XOR Gadget (continued)

• The XOR gadget schema:

+

u u'

v' v

• At most one of the 2 schematic edges will be included in
a cycle cover.

• There will be 3m XOR gadgets, one for each literal.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 765

The Proof: Properties of the XOR Gadget (continued)

Total weight of −1− 2 + 6− 3 = 0 for cycle covers not
entering or leaving it.

- 1

u

v'

u'

v - 1

2

u

v'

u'

v

- 1

3

u

v'

u'

v

2

3

u

v'

u'

v

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 766

The Proof: Properties of the XOR Gadget (continued)

• Total weight of −1 + 1− 6 + 2 + 3 + 1 = 0 for cycle
covers entering at u and leaving at v′.a�

 1

u

v'

u'

v

u

v'

u'

v

�
 1

� �u

v'

u'

v

�u

v'

u'

v
�u

v'

u'

v

u

v'

u'

v

• Same for cycle covers entering at v and leaving at u′.
aCorrected by Mr. Yu-Tsung Dai (B91201046) and Mr. Che-Wei

Chang (R95922093) on December 27, 2006.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 767

The Proof: Properties of the XOR Gadget (continued)

• Total weight of 1 + 2 + 2− 1 + 1− 1 = 4 for cycle covers
entering at u and leaving at u′.

- 1

u

v'

u'

v

u

v'

u'

v

- 1

u

v'

u'

v

2

u

v'

u'

v

- 1

u

v'

u'

v

- 1 - 1

- 1
2

u

v'

u'

v

• Same for cycle covers entering at v and leaving at v′.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 768

The Proof: Summary (continued)

• Cycle covers not entering all of the XOR gadgets
contribute 0 to the cycle count.

– Let x denote an XOR gadget not entered for a cycle
cover c.

– Now, the said cycle covers’ total contribution is

=
∑

cycle cover c for H

weight(c)

=
∑

cycle cover c for H − x

weight(c)
∑

cycle cover c for x

weight(c)

=
∑

cycle cover c for H − x

weight(c) · 0

= 0.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 769

The Proof: Summary (continued)

• Cycle covers entering any of the XOR gadgets and
leaving illegally contribute 0 to the cycle count.

• For every XOR gadget entered and exited legally, the
total weight of a cycle cover is multiplied by 4.
– With an XOR gadget x entered and exited legally

fixed,

contributions of such cycle covers to the cycle count∑

cycle cover c for H

weight(c)

=
∑

cycle cover c for H − x

weight(c)
∑

cycle cover c for x

weight(c)

=
∑

cycle cover c for H − x

weight(c) · 4.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 770

The Proof: Summary (continued)

• Hereafter we consider only cycle covers which enter
every XOR gadget and leaves it legally.

– Only these cycle covers contribute nonzero weights to
the cycle count.

• They are said to respect the XOR gadgets.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 771

The Proof: the Choice Gadget (continued)

• One choice gadget (a schema) for each variable.

x x

• It gives the truth assignment for the variable.

• Use it with the XOR gadget to enforce consistency.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 772

Schema for (w ∨ x ∨ ȳ) ∧ (x̄ ∨ ȳ ∨ z̄)

w w y y z zx x

w

x

y x

y

z

+ + ++++

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 773

Full Graph (w ∨ x ∨ ȳ) ∧ (x̄ ∨ ȳ ∨ z̄)

w w y y z zx x

w

x

y x

y

z

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 774

The Proof: a Key Observation (continued)

Each satisfying truth assignment to φ corresponds to a
schematic cycle cover that respects the XOR gadgets.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 775

w = 1, x = 0, y = 0, z = 1 ⇔ One Cycle Cover

w w y y z zx x

w

x

y x

y

z

+ + ++++

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 776

The Proof: a Key Corollary (continued)

• Recall that there are 3m XOR gadgets.

• Each satisfying truth assignment to φ contributes 43m to
the cycle count #H.

• Hence
#H = 43m ×#φ,

as desired.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 777

“w = 1, x = 0, y = 0, z = 1” Adds 46 to Cycle Count

w w y y z zx x

w

x

y x

y

z

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 778

The Proof (continued)

• We are almost done.

• The weighted directed graph H needs to be efficiently
replaced by some unweighted graph G.

• Furthermore, knowing #G should enable us to calculate
#H efficiently.

– This done, #φ will have been Turing-reducible to
#G.a

• We proceed to construct this graph G.
aBy way of #H of course.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 779

The Proof: Construction of G (continued)

• Replace edges with weights 2 and 3 as follows (note that
the graph cannot have parallel edges):

- 1

- 1

- 1

u

v'

u'

v

• The cycle count #H remains unchanged.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 780

The Proof: Construction of G (continued)

• We move on to edges with weight −1.

• First, we count the number of nodes, M .

• Each clause gadget contains 4 nodes (p. 761), and there
are m of them (one per clause).

• Each revised XOR gadget contains 7 nodes (p. 780), and
there are 3m of them (one per literal).

• Each choice gadget contains 2 nodes (p. 772), and there
are n ≤ 3m of them (one per variable).

• So
M ≤ 4m + 21m + 6m = 31m.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 781

The Proof: Construction of G (continued)

• #H ≤ 2L for some L = O(m log m).

– The maximum absolute value of the edge weight is 1.

– Hence each term in the permanent is at most 1.

– There are M ! ≤ (31m)! terms.

– Hence

#H ≤
√

2π(31m)
(

31m

e

)31m

e
1

12×(31m)

= 2O(m log m) (13)

by a refined Stirling’s formula.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 782

The Proof: Construction of G (continued)

• Replace each edge with weight −1 with the following:

/����

• Each increases the number of cycle covers 2L+1-fold.

• The desired unweighted G has been obtained.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 783

The Proof (continued)

• #G equals #H after replacing each appearance −1 in
#H with 2L+1:

#H = · · ·+
a cycle cover︷ ︸︸ ︷

1 · 1 · · · (−1) · · · 1+ · · · ,

#G = · · ·+
a cycle cover︷ ︸︸ ︷

1 · 1 · · · 2L+1 · · · 1+ · · · .

• Let #G =
∑n

i=0 ai × (2L+1)i, where 0 ≤ ai < 2L+1.

• Recall that #H ≤ 2L (p. 782).

• So if we replace −1 by 1, each ai counts the number of
cycle covers with i edges of weight −1 as there is no
“overflow.”

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 784

The Proof (concluded)

• We conclude that

#H = a0 − a1 + a2 − · · ·+ (−1)nan,

indeed easily computable from #G.

• We know #H = 43m ×#φ (p. 777).

• So

#φ =
a0 − a1 + a2 − · · ·+ (−1)nan

43m
.

– Equivalently,

#φ =
#G mod (2L+1 + 1)

43m
.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 785

Finis

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 786

