## Unapproximability of $\mathrm{TSP}^{\mathrm{a}}$

Theorem 80 The approximation threshold of TSP is 1 unless $P=N P$.

- Suppose there is a polynomial-time $\epsilon$-approximation algorithm for TSP for some $\epsilon<1$.
- We shall construct a polynomial-time algorithm for the NP-complete hamiltonian cycle.
- Given any graph $G=(V, E)$, construct a TSP with $|V|$ cities with distances

$$
d_{i j}=\left\{\begin{array}{cl}
1, & \text { if }\{i, j\} \in E \\
\frac{|V|}{1-\epsilon}, & \text { otherwise }
\end{array}\right.
$$

[^0]
## The Proof (concluded)

- Run the alleged approximation algorithm on this TSP.
- Suppose a tour of cost $|V|$ is returned.
- This tour must be a Hamiltonian cycle.
- Suppose a tour with at least one edge of length $\frac{|V|}{1-\epsilon}$ is returned.
- The total length of this tour is $>\frac{|V|}{1-\epsilon}$.
- Because the algorithm is $\epsilon$-approximate, the optimum is at least $1-\epsilon$ times the returned tour's length.
- The optimum tour has a cost exceeding $|V|$.
- Hence $G$ has no Hamiltonian cycles.

KNAPSACK Has an Approximation Threshold of Zero ${ }^{a}$
Theorem 81 For any $\epsilon$, there is a polynomial-time $\epsilon$-approximation algorithm for KNAPSACK.

- We have $n$ weights $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{Z}^{+}$, a weight limit $W$, and $n$ values $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{Z}^{+}$. ${ }^{\text {b }}$
- We must find an $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i}$ is the largest possible.

[^1]${ }^{\mathrm{b}}$ If the values are fractional, the result is slightly messier but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian

## The Proof (continued)

- Let

$$
V=\max \left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Clearly, $\sum_{i \in S} v_{i} \leq n V$.
- Let $0 \leq i \leq n$ and $0 \leq v \leq n V$.
- $W(i, v)$ is the minimum weight attainable by selecting some of the first $i$ items with a total value of $v$.
- Set $W(0, v)=\infty$ for $v \in\{1,2, \ldots, n V\}$ and $W(i, 0)=0$ for $i=0,1, \ldots, n$. ${ }^{\text {a }}$

[^2]
## The Proof (continued)

- Then, for $0 \leq i<n$,

$$
W(i+1, v)=\min \left\{W(i, v), W\left(i, v-v_{i+1}\right)+w_{i+1}\right\}
$$

- Finally, pick the largest $v$ such that $W(n, v) \leq W$.
- The running time is $O\left(n^{2} V\right)$, not polynomial time.
- Key idea: Limit the number of precision bits.


## The Proof (continued)

- Define

$$
v_{i}^{\prime}=2^{b}\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor .
$$

- This is equivalent to zeroing each $v_{i}$ 's last $b$ bits.
- From the original instance

$$
x=\left(w_{1}, \ldots, w_{n}, W, v_{1}, \ldots, v_{n}\right)
$$

define the approximate instance

$$
x^{\prime}=\left(w_{1}, \ldots, w_{n}, W, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)
$$

## The Proof (continued)

- Solving $x^{\prime}$ takes time $O\left(n^{2} V / 2^{b}\right)$.
- The algorithm only performs subtractions on the $v_{i}$-related values.
- So the $b$ last bits can be removed from the calculations.
- That is, use $v_{i}^{\prime}=\left\lfloor\frac{v_{i}}{2^{b}}\right\rfloor$ in the calculations.
- Then multiply the returned value by $2^{b}$.
- The solution $S^{\prime}$ is close to the optimum solution $S$ :

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S^{\prime}} v_{i}^{\prime} \geq \sum_{i \in S} v_{i}^{\prime} \geq \sum_{i \in S}\left(v_{i}-2^{b}\right) \geq \sum_{i \in S} v_{i}-n 2^{b}
$$

## The Proof (continued)

- Hence

$$
\sum_{i \in S^{\prime}} v_{i} \geq \sum_{i \in S} v_{i}-n 2^{b} .
$$

- Without loss of generality, assume $w_{i} \leq W$ for all $i$.
- Otherwise item $i$ is redundant.
- $V$ is a lower bound on opt.
- Picking any single item with value $\leq V$ is a legitimate choice.
- The relative error from the optimum is $\leq n 2^{b} / V$ :

$$
\frac{\sum_{i \in S} v_{i}-\sum_{i \in S^{\prime}} v_{i}}{\sum_{i \in S} v_{i}} \leq \frac{\sum_{i \in S} v_{i}-\sum_{i \in S^{\prime}} v_{i}}{V} \leq \frac{n 2^{b}}{V} .
$$

## The Proof (concluded)

- Suppose we pick $b=\left\lfloor\log _{2} \frac{\epsilon V}{n}\right\rfloor$.
- The algorithm becomes $\epsilon$-approximate (see Eq. (10) on p. 639).
- The running time is then $O\left(n^{2} V / 2^{b}\right)=O\left(n^{3} / \epsilon\right)$, a polynomial in $n$ and $1 / \epsilon$. ${ }^{\text {a }}$
${ }^{\text {a }}$ It hence depends on the value of $1 / \epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix $\epsilon$ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.


## Pseudo-Polynomial-Time Algorithms

- Consider problems with inputs that consist of a collection of integer parameters (TSP, KNAPSACK, etc.).
- An algorithm for such a problem whose running time is a polynomial of the input length and the value (not length) of the largest integer parameter is a pseudo-polynomial-time algorithm. ${ }^{\text {a }}$
- On p. 665, we presented a pseudo-polynomial-time algorithm for KNAPSACK that runs in time $O\left(n^{2} V\right)$.
- How about TSP (D), another NP-complete problem?

[^3]
## No Pseudo-Polynomial-Time Algorithms for TSP (D)

- By definition, a pseudo-polynomial-time algorithm becomes polynomial-time if each integer parameter is limited to having a value polynomial in the input length.
- Corollary 43 (p. 344) showed that hamiltonian path is reducible to TSP (D) with weights 1 and 2.
- As hamiltonian path is NP-complete, tSp (D) cannot have pseudo-polynomial-time algorithms unless $\mathrm{P}=\mathrm{NP}$.
- TSP (D) is said to be strongly NP-hard.
- Many weighted versions of NP-complete problems are strongly NP-hard.


## Polynomial-Time Approximation Scheme

- Algorithm $M$ is a polynomial-time approximation scheme (PTAS) for a problem if:
- For each $\epsilon>0$ and instance $x$ of the problem, $M$ runs in time polynomial (depending on $\epsilon$ ) in $|x|$. * Think of $\epsilon$ as a constant.
- $M$ is an $\epsilon$-approximation algorithm for every $\epsilon>0$.


## Fully Polynomial-Time Approximation Scheme

- A polynomial-time approximation scheme is fully polynomial (FPTAS) if the running time depends polynomially on $|x|$ and $1 / \epsilon$.
- Maybe the best result for a "hard" problem.
- For instance, KNAPSACK is fully polynomial with a running time of $O\left(n^{3} / \epsilon\right)$ (p. 663).


## Square of $G$

- Let $G=(V, E)$ be an undirected graph.
- $G^{2}$ has nodes $\left\{\left(v_{1}, v_{2}\right): v_{1}, v_{2} \in V\right\}$ and edges

$$
\left\{\left\{\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right\}:\left(u=v \wedge\left\{u^{\prime}, v^{\prime}\right\} \in E\right) \vee\{u, v\} \in E\right\} .
$$



## Independent Sets of $G$ and $G^{2}$

Lemma $82 G(V, E)$ has an independent set of size $k$ if and only if $G^{2}$ has an independent set of size $k^{2}$.

- Suppose $G$ has an independent set $I \subseteq V$ of size $k$.
- $\{(u, v): u, v \in I\}$ is an independent set of size $k^{2}$ of $G^{2}$.



## The Proof (continued)

- Suppose $G^{2}$ has an independent set $I^{2}$ of size $k^{2}$.
- $U \equiv\left\{u: \exists v \in V(u, v) \in I^{2}\right\}$ is an independent set of $G$.

- $|U|$ is the number of "rows" that the nodes in $I^{2}$ occupy.


## The Proof (concluded) ${ }^{\text {a }}$

- If $|U| \geq k$, then we are done.
- Now assume $|U|<k$.
- As the $k^{2}$ nodes in $I^{2}$ cover fewer than $k$ "rows," there must be a "row" in possession of $>k$ nodes of $I^{2}$.
- Those $>k$ nodes will be independent in $G$ as each "row" is a copy of $G$.
${ }^{\text {a }}$ Thanks to a lively class discussion on December 29, 2004.


## Approximability of INDEPENDENT SET

- The approximation threshold of the maximum independent set is either zero or one (it is one!).

Theorem 83 If there is a polynomial-time $\epsilon$-approximation algorithm for INDEPENDENT SET for any $0<\epsilon<1$, then there is a polynomial-time approximation scheme.

- Let $G$ be a graph with a maximum independent set of size $k$.
- Suppose there is an $O\left(n^{i}\right)$-time $\epsilon$-approximation algorithm for INDEPENDENT SET.
- We seek a polynomial-time $\epsilon^{\prime}$-approximation algorithm with $\epsilon^{\prime}<\epsilon$.


## The Proof (continued)

- By Lemma 82 (p. 675), the maximum independent set of $G^{2}$ has size $k^{2}$.
- Apply the algorithm to $G^{2}$.
- The running time is $O\left(n^{2 i}\right)$.
- The resulting independent set has size $\geq(1-\epsilon) k^{2}$.
- By the construction in Lemma 82 (p. 675), we can obtain an independent set of size $\geq \sqrt{(1-\epsilon) k^{2}}$ for $G$.
- Hence there is a $(1-\sqrt{1-\epsilon})$-approximation algorithm for independent set by Eq. (11) on p. 640.


## The Proof (concluded)

- In general, we can apply the algorithm to $G^{2^{\ell}}$ to obtain an $\left(1-(1-\epsilon)^{2^{-\ell}}\right)$-approximation algorithm for INDEPENDENT SET.

- Now pick $\ell=\left\lceil\log \frac{\log (1-\epsilon)}{\log \left(1-\epsilon^{\prime}\right)}\right\rceil$.
- The running time becomes $n^{i \frac{\log (1-\epsilon)}{\log (1-\epsilon)}}$.
- It is an $\epsilon^{\prime}$-approximation algorithm for INDEPENDENT SET.
${ }^{\mathrm{a}}$ It is not fully polynomial.


## Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 40, p. 309).
- NODE COVER has an approximation threshold at most 0.5 (p. 645).
- But independent set is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called $k$-DEGREE INDEPENDENT SET.
- $k$-DEGREE INDEPENDENT SET is approximable (see the textbook).


## On P vs. NP

## Density ${ }^{\text {a }}$

The density of language $L \subseteq \Sigma^{*}$ is defined as

$$
\operatorname{dens}_{L}(n)=|\{x \in L:|x| \leq n\}| .
$$

- If $L=\{0,1\}^{*}$, then $\operatorname{dens}_{L}(n)=2^{n+1}-1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq\{0\}^{*}$,

$$
\operatorname{dens}_{L}(n) \leq n+1 .
$$

- Because $L \subseteq\{\epsilon, 0,00, \ldots, \overbrace{00 \cdots 0}^{n}, \ldots\}$.

[^4]
## Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- Dense languages are languages with superpolynomial density functions.


## Self-Reducibility for SAT

- An algorithm exhibits self-reducibility if it finds a certificate by exploiting algorithms for the decision version of the same problem.
- Let $\phi$ be a boolean expression in $n$ variables $x_{1}, x_{2}, \ldots, x_{n}$.
- $t \in\{0,1\}^{j}$ is a partial truth assignment for $x_{1}, x_{2}, \ldots, x_{j}$.
- $\phi[t]$ denotes the expression after substituting the truth values of $t$ for $x_{1}, x_{2}, \ldots, x_{|t|}$ in $\phi$.


## An Algorithm for Sat with Self-Reduction

We call the algorithm below with empty $t$.
1: if $|t|=n$ then
2: return $\phi[t]$;
3: else
4: $\quad$ return $\phi[t 0] \vee \phi[t 1]$;
5: end if
The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth- $n$ binary tree).

## NP-Completeness and Density ${ }^{\text {a }}$

Theorem 84 If a unary language $U \subseteq\{0\}^{*}$ is $N P$-complete, then $P=N P$.

- Suppose there is a reduction $R$ from sat to $U$.
- We use $R$ to find a truth assignment that satisfies boolean expression $\phi$ with $n$ variables if it is satisfiable.
- Specifically, we use $R$ to prune the exponential-time exhaustive search on p. 686.
- The trick is to keep the already discovered results $\phi[t]$ in a table $H$.
${ }^{\text {a }}$ Berman (1978).

```
1: if }|t|=n\mathrm{ then
2: return }\phi[t]
3: else
4: if (R(\phi[t]),v) is in table H then
5: return v;
6: else
7: if \phi[t0]="satisfiable" or }\phi[t1]=\mathrm{ "satisfiable" then
8: Insert (R(\phi[t]), "satisfiable") into H;
9: return "satisfiable";
10: else
11: Insert (R(\phi[t]), "unsatisfiable") into H;
12: return "unsatisfiable";
13: end if
14: end if
15: end if
```


## The Proof (continued)

- Since $R$ is a reduction, $R(\phi[t])=R\left(\phi\left[t^{\prime}\right]\right)$ implies that $\phi[t]$ and $\phi\left[t^{\prime}\right]$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because $R$ runs in log space.
- As $R$ maps to unary numbers, there are only polynomially many $p(n)$ values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.


## The Proof (continued)

- A search of the table takes time $O(p(n))$ in the random access memory model.
- The running time is $O(M p(n))$, where $M$ is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most $n$.


## The Proof (continued)

- There is a set $T=\left\{t_{1}, t_{2}, \ldots\right\}$ of invocations (partial truth assignments, i.e.) such that:

1. $|T| \geq(M-1) /(2 n)$.
2. All invocations in $T$ are recursive (nonleaves).
3. None of the elements of $T$ is a prefix of another.


## The Proof (continued)

- All invocations $t \in T$ have different $R(\phi[t])$ values.
- None of $h, j \in T$ is a prefix of the other.
- The invocation of one started after the invocation of the other had terminated.
- If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of $T$ implies that there are at least $(M-1) /(2 n)$ different $R(\phi[t])$ values in the table.


## The Proof (concluded)

- We already know that there are at most $p(n)$ such values.
- Hence $(M-1) /(2 n) \leq p(n)$.
- Thus $M \leq 2 n p(n)+1$.
- The running time is therefore $O(M p(n))=O\left(n p^{2}(n)\right)$.
- We comment that this theorem holds for any sparse language, not just unary ones. ${ }^{\text {a }}$
${ }^{\text {a }}$ Mahaney (1980).


## coNP-Completeness and Density

Theorem 85 (Fortung (1979)) If a unary language $U \subseteq\{0\}^{*}$ is coNP-complete, then $P=N P$.

- Suppose there is a reduction $R$ from sat complement to $U$.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.


## Exponential Circuit Complexity

- Almost all boolean functions require

$$
\frac{2^{n}}{2 n}
$$

gates to compute (generalized Theorem 14 on p. 164).

- Progress of using circuit complexity to prove exponential lower bounds for NP-complete problems has been slow.
- As of January 2006, the best lower bound is $5 n-o(n) .^{\mathrm{a}}$

[^5]
## Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using monotone circuits.
- Monotone circuits are circuits without $\neg$ gates.
- Note that this does not settle the P vs. NP problem or any of the conjectures on p. 545.


## The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem, MONOTONE CIRCUIT VALUE (p. 257).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
- HAMILTONIAN PATH and CLIQUE.


## CLIQUE $_{n, k}$

- CLIQUE $_{n, k}$ is the boolean function deciding whether a graph $G=(V, E)$ with $n$ nodes has a clique of size $k$.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of $G$.
- Gate $g_{i j}$ is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE $_{n, k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for CLIQUE $_{n, k}$ may use fewer gates.


## Crude Circuits

- One possible circuit for CLIQUE $_{n, k}$ does the following.

1. For each $S \subseteq V$ with $|S|=k$, there is a subcircuit with $O\left(k^{2}\right) \wedge$-gates testing whether $S$ forms a clique.
2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}$.

- This is a monotone circuit with $O\left(k^{2}\binom{n}{k}\right)$ gates, which is exponentially large unless $k$ or $n-k$ is a constant.
- A crude circuit $\mathrm{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ tests if any of $X_{i} \subseteq V$ forms a clique.
- The above-mentioned circuit is $\mathrm{CC}\left(S_{1}, S_{2}, \ldots, S_{\binom{n}{k}}\right)$.


## Sunflowers

- Fix $p \in \mathbb{Z}^{+}$and $\ell \in \mathbb{Z}^{+}$.
- A sunflower is a family of $p$ sets $\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}$, called petals, each of cardinality at most $\ell$.
- All pairs of sets in the family must have the same intersection (called the core of the sunflower).



## A Sample Sunflower

$$
\begin{aligned}
& \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\}, \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$



## The Erdős-Rado Lemma

Lemma 86 Let $\mathcal{Z}$ be a family of more than $M=(p-1)^{\ell} \ell$ ! nonempty sets, each of cardinality $\ell$ or less. Then $\mathcal{Z}$ must contain a sunflower (of size p).

- Induction on $\ell$.
- For $\ell=1, p$ different singletons form a sunflower (with an empty core).
- Suppose $\ell>1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
- Every set in $\mathcal{Z}-\mathcal{D}$ intersects some set in $\mathcal{D}$.


## The Proof of the Erdős-Rado Lemma (continued)

- Suppose $\mathcal{D}$ contains at least $p$ sets.
- $\mathcal{D}$ constitutes a sunflower with an empty core.
- Suppose $\mathcal{D}$ contains fewer than $p$ sets.
- Let $C$ be the union of all sets in $\mathcal{D}$.
$-|C| \leq(p-1) \ell$ and $C$ intersects every set in $\mathcal{Z}$.
- There is a $d \in C$ that intersects more than

$$
\frac{M}{(p-1) \ell}=(p-1)^{\ell-1}(\ell-1)!\text { sets in } \mathcal{Z}
$$

- Consider $\mathcal{Z}^{\prime}=\{Z-\{d\}: Z \in \mathcal{Z}, d \in Z\}$.
$-\mathcal{Z}^{\prime}$ has more than $M^{\prime}=(p-1)^{\ell-1}(\ell-1)$ ! sets.


## The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
- $M^{\prime}$ is just $M$ with $\ell$ replaced with $\ell-1$.
$-\mathcal{Z}^{\prime}$ contains a sunflower by induction, say

$$
\left\{P_{1}, P_{2}, \ldots, P_{p}\right\} .
$$

- Now,

$$
\left\{P_{1} \cup\{d\}, P_{2} \cup\{d\}, \ldots, P_{p} \cup\{d\}\right\}
$$

is a sunflower in $\mathcal{Z}$.

## Comments on the Erdős-Rado Lemma

- A family of more than $M$ sets must contain a sunflower.
- Plucking a sunflower entails replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than $M$ sets to a family with at most $M$ sets.
- If $\mathcal{Z}$ is a family of sets, the above result is denoted by $\operatorname{pluck}(\mathcal{Z})$.
- Note: $\operatorname{pluck}(\mathcal{Z})$ is not unique.


## An Example of Plucking

- Recall the sunflower on p. 703:

$$
\begin{aligned}
\mathcal{Z}= & \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\}, \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$

- Then

$$
\operatorname{pluck}(\mathcal{Z})=\{\{1,2\}\} .
$$

## Razborov's Theorem

Theorem 87 (Razborov (1985)) There is a constant $c$ such that for large enough n, all monotone circuits for $\operatorname{CLIQUE}_{n, k}$ with $k=n^{1 / 4}$ have size at least $n^{c n^{1 / 8}}$.

- We shall approximate any monotone circuit for CLIQUE $_{n, k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the resulting crude circuit has exponentially many errors.


## Alexander Razborov (1963-)




[^0]:    ${ }^{\text {a }}$ Sahni and Gonzales (1976).

[^1]:    ${ }^{\text {a }}$ Ibarra and Kim (1975). (R92922045) on December 29, 2004.

[^2]:    ${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.

[^3]:    ${ }^{\text {a }}$ Garey and Johnson (1978).

[^4]:    ${ }^{\text {a }}$ Berman and Hartmanis (1977).

[^5]:    ${ }^{\mathrm{a}}$ Iwama and Morizumi (2002).

