
Zero-Knowledge Proof of 3 Colorabilitya

1: for i = 1, 2, . . . , |E |2 do

2: Peggy chooses a random permutation π of the 3-coloring φ;

3: Peggy samples encryption schemes randomly, commitsb them,

and sends π(φ(1)), π(φ(2)), . . . , π(φ(|V |)) encrypted to Victor;

4: Victor chooses at random an edge e ∈ E and sends it to Peggy

for the coloring of the endpoints of e;

5: if e = (u, v) ∈ E then

6: Peggy reveals the coloring of u and v and “proves” that they

correspond to their encryptions;

7: else

8: Peggy stops;

9: end if

aGoldreich, Micali, and Wigderson (1986).
bContributed by Mr. Ren-Shuo Liu (D98922016) on December 22,

2009.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 632



10: if the “proof” provided in Line 6 is not valid then

11: Victor rejects and stops;

12: end if

13: if π(φ(u)) = π(φ(v)) or π(φ(u)), π(φ(v)) 6∈ {1, 2, 3} then

14: Victor rejects and stops;

15: end if

16: end for

17: Victor accepts;

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 633



Analysis

• If the graph is 3-colorable and both Peggy and Victor
follow the protocol, then Victor always accepts.

• If the graph is not 3-colorable and Victor follows the
protocol, then however Peggy plays, Victor will accept
with probability ≤ (1−m−1)m2 ≤ e−m, where m = |E |.

• Thus the protocol is valid.

• This protocol yields no knowledge to Victor as all he
gets is a bunch of random pairs.

• The proof that the protocol is zero-knowledge to any
verifier is intricate.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 634



Comments

• Each π(φ(i)) is encrypted by a different cryptosystem.a

– Otherwise, all the colors will be revealed in Step 6.

• Each edge e must be picked randomly.b

– Otherwise, Peggy will know Victor’s game plan and
plot accordingly.

aContributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
bContributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 635



Approximability

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 636



Tackling Intractable Problems

• Many important problems are NP-complete or worse.

• Heuristics have been developed to attack them.

• They are approximation algorithms.

• How good are the approximations?

– We are looking for theoretically guaranteed bounds,
not “empirical” bounds.

• Are there NP problems that cannot be approximated
well (assuming NP 6= P)?

• Are there NP problems that cannot be approximated at
all (assuming NP 6= P)?

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 637



Some Definitions

• Given an optimization problem, each problem
instance x has a set of feasible solutions F (x).

• Each feasible solution s ∈ F (x) has a cost c(s) ∈ Z+.

– Here, cost refers to the quality of the feasible
solution, not the time required to obtain it.

– It is our objective function, e.g., total distance,
satisfaction, or cut size.

• The optimum cost is opt(x) = mins∈F (x) c(s) for a
minimization problem.

• It is opt(x) = maxs∈F (x) c(s) for a maximization
problem.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 638



Approximation Algorithms

• Let algorithm M on x returns a feasible solution.

• M is an ε-approximation algorithm, where ε ≥ 0, if
for all x,

|c(M(x))− opt(x)|
max(opt(x), c(M(x)))

≤ ε.

– For a minimization problem,

c(M(x))−mins∈F (x) c(s)
c(M(x))

≤ ε.

– For a maximization problem,

maxs∈F (x) c(s)− c(M(x))
maxs∈F (x) c(s)

≤ ε. (10)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 639



Lower and Upper Bounds

• For a minimization problem,

min
s∈F (x)

c(s) ≤ c(M(x)) ≤ mins∈F (x) c(s)
1− ε

.

– So approximation ratio mins∈F (x) c(s)

c(M(x)) ≥ 1− ε.

• For a maximization problem,

(1− ε)× max
s∈F (x)

c(s) ≤ c(M(x)) ≤ max
s∈F (x)

c(s). (11)

– So approximation ratio c(M(x))
maxs∈F (x) c(s) ≥ 1− ε.

• They are alternative definitions of ε-approximation.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 640



Range Bounds

• ε takes values between 0 and 1.

• For maximization problems, an ε-approximation
algorithm returns solutions within [ (1− ε)× opt,opt ].

• For minimization problems, an ε-approximation
algorithm returns solutions within [opt, opt

1−ε ].

• For each NP-complete optimization problem, we shall be
interested in determining the smallest ε for which there
is a polynomial-time ε-approximation algorithm.

• Sometimes ε has no minimum value.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 641



Approximation Thresholds

• The approximation threshold is the greatest lower
bound of all ε ≥ 0 such that there is a polynomial-time
ε-approximation algorithm.

• The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any
desired degree) and 1 (no approximation is possible).

• If P = NP, then all optimization problems in NP have
an approximation threshold of 0.

• So we assume P 6= NP for the rest of the discussion.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642



node cover

• node cover seeks the smallest C ⊆ V in graph
G = (V,E) such that for each edge in E, at least one of
its endpoints is in C.

• A heuristic to obtain a good node cover is to iteratively
move a node with the highest degree to the cover.

• This turns out to produce

c(M(x))
opt(x)

= Θ(log n).

• Hence the approximation ratio is Θ(log−1 n).

• It is not an ε-approximation algorithm for any ε < 1.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 643



A 0.5-Approximation Algorithma

1: C := ∅;
2: while E 6= ∅ do
3: Delete an arbitrary edge {u, v } from E;
4: Delete edges incident with u and v from E;
5: Add u and v to C; {Add 2 nodes to C each time.}
6: end while
7: return C;

aJohnson (1974).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 644



Analysis

• C contains |C|/2 edges.

• No two edges of C share a node.a

• Any node cover must contain at least one node from
each of these edges.

• This means that opt(G) ≥ |C|/2.

• So
opt(G)
|C| ≥ 1/2.

• The approximation threshold is ≤ 0.5.b

aIn fact, C is a maximal matching.
b0.5 is also the lower bound for any “greedy” algorithms (see Davis

and Impagliazzo (2004)).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 645



c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 646



The 0.5 Bound Is Tight for the Algorithma

Optimal cover

aContributed by Mr. Jenq-Chung Li (R92922087) on December 20,

2003.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 647



Maximum Satisfiability

• Given a set of clauses, maxsat seeks the truth
assignment that satisfies the most.

• max2sat is already NP-complete (p. 287).

• Consider the more general k-maxgsat for constant k.

– Given a set of boolean expressions
Φ = {φ1, φ2, . . . , φm} in n variables.

– Each φi is a general expression involving k variables.

– k-maxgsat seeks the truth assignment that satisfies
the most expressions.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 648



A Probabilistic Interpretation of an Algorithm

• Each φi involves exactly k variables and is satisfied by si

of the 2k truth assignments.

• A random truth assignment ∈ {0, 1}n satisfies φi with
probability p(φi) = si/2k.

– p(φi) is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an expected
number

p(Φ) =
m∑

i=1

p(φi)

of expressions φi.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 649



The Search Procedure

• Clearly

p(Φ) =
1
2
{ p(Φ[ x1 = true ]) + p(Φ[x1 = false ]) }.

• Select the t1 ∈ {true, false} such that p(Φ[x1 = t1 ]) is
the larger one.

• Note that p(Φ[ x1 = t1 ]) ≥ p(Φ).

• Repeat with expression Φ[ x1 = t1 ] until all variables xi

have been given truth values ti and all φi either true or
false.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 650



The Search Procedure (concluded)

• By our hill-climbing procedure,

p(Φ)

≤ p(Φ[ x1 = t1 ])

≤ p(Φ[ x1 = t1, x2 = t2 ])

≤ · · ·
≤ p(Φ[ x1 = t1, x2 = t2, . . . , xn = tn ]).

• So at least p(Φ) expressions are satisfied by truth
assignment (t1, t2, . . . , tn).

• The algorithm is deterministic.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 651



Approximation Analysis

• The optimum is at most the number of satisfiable
φi—i.e., those with p(φi) > 0.

• Hence the ratio of algorithm’s output vs. the optimum is

≥ p(Φ)∑
p(φi)>0 1

=
∑

i p(φi)∑
p(φi)>0 1

≥ min
p(φi)>0

p(φi).

• The heuristic is a polynomial-time ε-approximation
algorithm with ε = 1−minp(φi)>0 p(φi).

• Because p(φi) ≥ 2−k, the heuristic is a polynomial-time
ε-approximation algorithm with ε = 1− 2−k.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652



Back to maxsat

• In maxsat, the φi’s are clauses.

• Hence p(φi) ≥ 1/2, which happens when φi contains a
single literal.

• And the heuristic becomes a polynomial-time
ε-approximation algorithm with ε = 1/2.a

• If the clauses have k distinct literals, p(φi) = 1− 2−k.

• And the heuristic becomes a polynomial-time
ε-approximation algorithm with ε = 2−k.

– This is the best possible for k ≥ 3 unless P = NP.
aJohnson (1974).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 653



max cut Revisited

• The NP-complete max cut seeks to partition the nodes
of graph G = (V, E) into (S, V − S) so that there are as
many edges as possible between S and V − S (p. 315).

• Local search starts from a feasible solution and
performs “local” improvements until none are possible.

• Next we present a local search algorithm for max cut.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 654



A 0.5-Approximation Algorithm for max cut

1: S := ∅;
2: while ∃v ∈ V whose switching sides results in a larger

cut do
3: Switch the side of v;
4: end while
5: return S;

• A 0.12-approximation algorithm exists.a

• 0.059-approximation algorithms do not exist unless
NP = ZPP.

aGoemans and Williamson (1995).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655



Analysis

V3 V4

V2V1

Optimal cut

Our cut

e12

e13
e24

e34

e14 e23

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 656



Analysis (continued)

• Partition V = V1 ∪ V2 ∪ V3 ∪ V4, where

– Our algorithm returns (V1 ∪ V2, V3 ∪ V4).

– The optimum cut is (V1 ∪ V3, V2 ∪ V4).

• Let eij be the number of edges between Vi and Vj .

• For each node v ∈ V1, its edges to V1 ∪ V2 are
outnumbered by those to V3 ∪ V4.

– Otherwise, v would have been moved to V3 ∪ V4 to
improve the cut.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 657



Analysis (continued)

• Considering all nodes in V1 together, we have
2e11 + e12 ≤ e13 + e14

– It is 2e11 is because each edge in V1 is counted twice.

• The above inequality implies

e12 ≤ e13 + e14.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658



Analysis (concluded)

• Similarly,

e12 ≤ e23 + e24

e34 ≤ e23 + e13

e34 ≤ e14 + e24

• Add all four inequalities, divide both sides by 2, and add
the inequality e14 + e23 ≤ e14 + e23 + e13 + e24 to obtain

e12 + e34 + e14 + e23 ≤ 2(e13 + e14 + e23 + e24).

• The above says our solution is at least half the optimum.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659



Approximability, Unapproximability, and Between

• knapsack, node cover, maxsat, and max cut have
approximation thresholds less than 1.

– knapsack has a threshold of 0 (see p. 663).

– But node cover and maxsat have a threshold
larger than 0.

• The situation is maximally pessimistic for tsp: It
cannot be approximated unless P = NP (see p. 661).

– The approximation threshold of tsp is 1.

∗ The threshold is 1/3 if the tsp satisfies the
triangular inequality.

– The same holds for independent set.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 660


