Theory of Computation

Solutions to Homework 4

Problem 1. Let $a, b \in \mathbb{N}$ and p be a prime. Show that $(a+b)^{p}=a^{p}+$ $b^{p} \bmod p$.

Proof. By the binomial expansion,

$$
\begin{equation*}
(a+b)^{p}=\sum_{r=0}^{p}\binom{p}{r} a^{r} b^{p-r} . \tag{1}
\end{equation*}
$$

As p is a prime, $r!(p-r)$! is not a multiple of p for $0<r<p$. But $\binom{p}{r}=p!/(r!(p-r)!)$ is an integer and $p \mid p!$. Hence $\binom{p}{r}$ is a multiple of p for $0<r<p$. Therefore, Eq. (1) gives $(a+b)^{p}=a^{p}+b^{p} \bmod p$.

Problem 2. Let d be a positive integer. Show that

$$
\left|\left\{x \in \mathbb{R} \mid \exists a_{0}, \ldots, a_{d} \in\{1,2,3\}, \sum_{i=0}^{d} a_{i} x^{i}=0\right\}\right| \leq d 3^{d+1},
$$

i.e., degree- d polynomials with coefficients in $\{1,2,3\}$ have at most $d 3^{d+1}$ distinct roots altogether.

Proof. There are 3^{d+1} degree- d polynomials with coefficients in $\{1,2,3\}$. Each of them has at most d roots.

