Theory of Computation

Homework 4

Due: 2009/12/15
Problem 1. Let $a, b \in \mathbb{N}$ and p be a prime. Show that $(a+b)^{p}=a^{p}+$ $b^{p} \bmod p$.

Problem 2. Let d be a positive integer. Show that

$$
\left|\left\{x \in \mathbb{R} \mid \exists a_{0}, \ldots, a_{d} \in\{1,2,3\}, \sum_{i=0}^{d} a_{i} x^{i}=0\right\}\right| \leq d 3^{d+1},
$$

i.e., degree- d polynomials with coefficients in $\{1,2,3\}$ have at most $d 3^{d+1}$ distinct roots altogether.

