The Secret-Key Agreement Problem

Exchanging messages securely using a private-key
cryptosystem requires Alice and Bob possessing the
same key (p. 568).

How can they agree on the same secret key when the

channel is insecure?
This is called the secret-key agreement problem.

It was solved by Diffie and Hellman (1976) using

one-way functions.
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The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}

. Alice chooses a large number a at random:;

. Alice computes a = g* mod p;

: Bob chooses a large number b at random;

. Bob computes 3 = ¢° mod p;

. Alice sends a to Bob, and Bob sends (8 to Alice;

. Alice computes her key 5% mod p;

. Bob computes his key a® mod p;
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Analysis

The keys computed by Alice and Bob are identical:

B¢ = gb"’ = gab = o’ mod p.

To compute the common key from p, g, o, B is known as
the Diffie-Hellman problem.

It is conjectured to be hard.

If discrete logarithm is easy, then one can solve the
Diffie-Hellman problem.

— Because a and b can then be obtained by Eve.

But the other direction is still open.
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A Parallel History

e Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

e At around the same time (or earlier) in Britain, the
RSA public-key cryptosystem was invented first before
the Diffie-Hellman secret-key agreement scheme was.

— Ellis, Cocks, and Williamson of the Communications
Electronics Security Group of the British Government
Communications Head Quarters (GCHQ).
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Digital Signatures®

Alice wants to send Bob a signed document x.
The signature must unmistakably identifies the sender.

Both Alice and Bob have public and private keys
€Alices €Bobs AAlice; dBob -
Assume the cryptosystem satisfies the commutative property
E(e,D(d,x)) = D(d, E(e,x)). (9)

— As (2%)¢ = (2°)%, the RSA system satisfies it.

— Every cryptosystem guarantees D(d, E(e,x)) = .

2Diffie and Hellman (1976).
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Digital Signatures Based on Public-Key Systems

Alice signs x as
(QZ', D(dAli067 SC))

Bob receives (x,y) and verifies the signature by checking

E(eAIicea y) — E(eAlicea D(dAlice7 ZIZ‘)) =X
based on Eq. (9).

The claim of authenticity is founded on the difficulty of
inverting E'ajice Without knowing the key dajice.

Warning: If Alice signs anything presented to her, she
might inadvertently decrypt a ciphertext of hers.
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Probabilistic Encryption?

A deterministic cryptosystem can be broken if the
plaintext has a distribution that favors the “easy” cases.

The ability to forge signatures on even a vanishingly
small fraction of strings of some length is a security
weakness if those strings were the probable ones!

A scheme may also “leak” partial information.

— Parity of the plaintext, e.g.

The first solution to the problems of skewed distribution
and partial information was based on the QRA.

2Goldwasser and Micali (1982).
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Shafi Goldwasser (1958-)

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 592



Silvio Micali (1954-)
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The Setup

Bob publishes n = pq, a product of two distinct primes,
and a quadratic nonresidue y with Jacobi symbol 1.

Bob keeps secret the factorization of n.
Alice wants to send bit string b1bs - - - by, to Bob.

Alice encrypts the bits by choosing a random quadratic
residue modulo n if b; is 1 and a random quadratic
nonresidue (with Jacobi symbol 1) otherwise.

A sequence of residues and nonresidues are sent.

Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.
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A Useful Lemma

Lemma 78 Let n = pq be a product of two distinct primes.

Then a number y € Z* is a quadratic residue modulo n if

and only if (y|p) = (y|q) = 1.
e The “only if” part:

— Let = be a solution to £ = y mod pg.

— Then z? = y mod p and z? = y mod ¢ also hold.

— Hence y is a quadratic modulo p and a quadratic
residue modulo g.
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The Proof (concluded)

e The “if” part:
— Let a# = y mod p and a3 = y mod q.

— Solve

r = a1 modp,

x as mod g,

for £ with the Chinese remainder theorem.

— As 22 = y mod p, 2° = y mod ¢, and ged(p, q) = 1,
2

we must have x“ = y mod pq.
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The Jacobi Symbol and Quadratic Residuacity Test

e The Legendre symbol can be used as a test for quadratic
residuacity by Lemma 66 (p. 483).

Lemma 78 (p. 595) says this is not the case with the

Jacobi symbol in general.
Suppose n = pq is a product of two distinct primes.

A number y € Z* with Jacobi symbol (y|pg) = 1 may

be a quadratic nonresidue modulo n when

(ylp) = (y|q) = —1,

because (y|pq) = (y|p)(y|q)-
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The Protocol for Alice
cfort=1,2,...,k do
Pick r € Z; randomly;
if b; =1 then
Send r? mod n; {Jacobi symbol is 1.}

else

Send r?y mod n; {Jacobi symbol is still 1.}
end if
. end for
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The Protocol for Bob
cfort=1,2,...,k do
Receive r;
if (r|p)=1and (r|q) =1 then

b, :=1;
else
b; .= 0;
end if
. end for
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Semantic Security

This encryption scheme is probabilistic.

There are a large number of different encryptions of a

given message.

One is chosen at random by the sender to represent the

message.

This scheme is both polynomially secure and

semantically secure.
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What Is a Proof?

A proof convinces a party of a certain claim.

— gty £ 2" for all z,y,z € ZT and n > 2.7

— “Graph G is Hamiltonian.”
— “zP = z mod p for prime p and p fz.”
In mathematics, a proof is a fixed sequence of theorems.

— Think of it as a written examination.

We will extend a proof to cover a proof process by which

the validity of the assertion is established.

— Recall a job interview or an oral examination.
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Prover and Verifier

There are two parties to a proof.
— The prover (Peggy).
— The verifier (Victor).

Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

The verifier’s objective is to accept only correct

assertions (soundness).
The verifier usually has an easier job than the prover.

e The setup is very much like the Turing test.?

2Turing (1950).
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Interactive Proof Systems

An interactive proof for a language L is a sequence of

questions and answers between the two parties.

At the end of the interaction, the verifier decides

whether the claim is true or false.

The verifier must be a probabilistic polynomial-time
algorithm.
The prover runs an exponential-time algorithm.

— If the prover is not more powerful than the verifier,

no interaction is needed.
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Interactive Proof Systems (concluded)

e The system decides L if the following two conditions

hold for any common input x.

— If x € L, then the probability that x is accepted by

the verifier is at least 1 — 2—!=1.

— If x € L, then the probability that x is accepted by
the verifier with any prover replacing the original

prover 1s at most 2-l=l,

e Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |z |.
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An Interactive Proof

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 605



P>

e IP is the class of all languages decided by an interactive

proof system.

e When x € L, the completeness condition can be
modified to require that the verifier accepts with

certainty without affecting IP.P

e Similar things cannot be said of the soundness condition
when x & L.

e Verifier’s coin flips can be public.©

2Goldwasser, Micali, and Rackoff (1985).

PGoldreich, Mansour, and Sipser (1987).
Goldwasser and Sipser (1989).
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The Relations of IP with Other Classes
e NP C IP.

— IP becomes NP when the verifier is deterministic.

e BPP C IP.

— IP becomes BPP when the verifier ignores the

prover’s messages.

e IP actually coincides with PSPACE.?

a@Shamir (1990).
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Graph Isomorphism

V1 = VQ — {1,2,...,7@}.
Graphs G1 = (V1, E7) and Gy = (Va, Es) are

isomorphic if there exists a permutation 7 on
{1,2,...,n} so that (u,v) € B} & (7(u),n(v)) € Es.

The task is to answer if G1 = G».
No known polynomial-time algorithms.
The problem is in NP (hence IP).

It is not likely to be NP-complete.?

2Schoning (1987).
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GRAPH NONISOMORPHISM

V1 :V2:{1,2,...,n}.

Graphs G; = (V4, E1) and G = (Vh, E5) are
nonisomorphic if there exist no permutations 7 on
{1,2,...,n} so that (u,v) € F1 < (7(u),n(v)) € Es.

The task is to answer if G1 2 Go.

Again, no known polynomial-time algorithms.
— It is in coNP, but how about NP or BPP?
— It is not likely to be coNP-complete.

e Surprisingly, GRAPH NONISOMORPHISM € IP.?

2Goldreich, Micali, and Wigderson (1986).
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A 2-Round Algorithm

Victor selects a random ¢ € {1,2 };
Victor selects a random permutation m on {1,2,...,n };
Victor applies m on graph G; to obtain graph H;
Victor sends (G1, H) to Peggy;
if G1 & H then
Peggy sends 7 = 1 to Victor;
else
Peggy sends 7 = 2 to Victor;
end if
if j =1 then

1:
2:
3:
4:
5:
6:
T
8:
9:

—_ =
)

Victor accepts;

- else

—_
.O:.')[\D

Victor rejects;
: end if

(U
S
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Analysis

e Victor runs in probabilistic polynomial time.

e Suppose G1 2 Ga.
— Peggy is able to tell which G; is isomorphic to H.

— So Victor always accepts.

e Suppose G1 = Ga.
— No matter which ¢ is picked by Victor, Peggy or any

prover sees 2 identical graphs.

— Peggy or any prover with exponential power has only

probability one half of guessing ¢ correctly.

— So Victor erroneously accepts with probability 1/2.

e Repeat the algorithm to obtain the desired probabilities.
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Knowledge in Proofs

e Suppose I know a satisfying assignment to a satisfiable

boolean expression.
e I can convince Alice of this by giving her the assignment.

e But then I give her more knowledge than necessary.
— Alice can claim that she found the assignment!
— Login authentication faces essentially the same issue.

— See
www.wired.com/wired/archive/1.05/atm_pr.html
for a famous ATM fraud in the U.S.
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Knowledge in Proofs (concluded)

Digital signatures authenticate documents but not

individuals.
They hence do not solve the problem.
Suppose I always give Alice random bits.

Alice extracts no knowledge from me by any measure,
but I prove nothing.

Question 1: Can we design a protocol to convince Alice
(the knowledge) of a secret without revealing anything
extra?

Question 2: How to define this idea rigorously?
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Zero Knowledge Proofs®

An interactive proof protocol (P, V') for language L has the
perfect zero-knowledge property if:

e For every verifier V’, there is an algorithm M with

expected polynomial running time.

e M on any input x € L generates the same probability
distribution as the one that can be observed on the

communication channel of (P, V') on input .

2Goldwasser, Micali, and Rackoff (1985).
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Comments

e Zero knowledge is a property of the prover.

— It is the robustness of the prover against attempts of
the verifier to extract knowledge via interaction.

The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program.

A verifier cannot use the transcript of the interaction
to convince a third-party of the validity of the claim.

The proof is hence not transferable.
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Comments (continued)

e Whatever a verifier can “learn” from the specified prover
P via the communication channel could as well be

computed from the verifier alone.
e The verifier does not learn anything except “x € L.”

e Zero-knowledge proofs yield no knowledge in the sense
that they can be constructed by the verifier who believes
the statement, and yet these proofs do convince him.
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Comments (continued)

The “paradox” is resolved by noting that it is not the

transcript of the conversation that convinces the verifier.
But the fact that this conversation was held “on line.”
There is no zero-knowledge requirement when = ¢ L.

Computational zero-knowledge proofs are based on

complexity assumptions.

— M only needs to generate a distribution that is
computationally indistinguishable from the verifier’s

view of the interaction.
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Comments (concluded)

e It is known that if one-way functions exist, then

zero-knowledge proofs exist for every problem in NP.?

e The verifier can be restricted to the honest one (i.e., it
follows the protocol).P

e The coins can be public.©

2Goldreich, Micali, and Wigderson (1986).

PVadhan (2006).
“Vadhan (2006).
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Are You Convinced?

e A newspaper commercial for hair-growing products for
men.
— A (for all practical purposes) bald man has a full
head of hair after 3 months.

e A TV commercial for weight-loss products.

— A (by any reasonable measure) overweight woman

loses 10 kilograms in 10 weeks.
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Quadratic Residuacity

e Let n be a product of two distinct primes.

e Assume extracting the square root of a quadratic residue

modulo n is hard without knowing the factors.

e We next present a zero-knowledge proof for z € 2
being a quadratic residue.
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Zero-Knowledge Proof of Quadratic Residuacity

1. form=1,2,...,logy,n do
Peggy chooses a random v € Z; and sends
y = v? mod n to Victor;
Victor chooses a random bit ¢ and sends it to Peggy;
Peggy sends z = u'v mod n, where u is a square root
of z; {u? = x mod n.}
Victor checks if z? = 2’y mod n;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;
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A Useful Corollary

Corollary 79 Let n = pg be a product of two distinct
primes. (1) If x and y are both quadratic residues modulo n,
then xy € Z* is a quadratic residue modulo n. (2) If x is a
quadratic residue modulo n and y s a quadratic nonresidue

modulo n, then xy € Z* 1s a quadratic nonresidue modulo n.
e Suppose x and y are both quadratic residues modulo n.
o Let £ = a® mod n and y = b* mod n.

e Now zy is a quadratic residue as xy = (ab)? mod n.
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The Proof (concluded)

e Suppose x is a quadratic residue modulo n and y is a

quadratic nonresidue modulo n.
e By Lemma 78 (p. 595), (¢ |p) = (x|q) = 1 but, say,
(ylp) = -1

e Now zy is a quadratic nonresidue as (zy |p) = —1, again
by Lemma 78 (p. 595).
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Analysis

e Suppose z is a quadratic nonresidue.
— Peggy can answer only one of the two possible
challenges.

x If a is a quadratic residue, then za is a quadratic
nonresidue by Corollary 79 (p. 622).

+ So 'y can be a quadratic residue (see Line 5) only

when 7 = 0.

— So Peggy will be caught in any given round with
probability one half.
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Analysis (continued)

Suppose x is a quadratic residue.
— Peggy can answer all challenges.

— So Victor will accept x.
How about the claim of zero knowledge?

The transcript between Peggy and Victor when x is a

quadratic residue can be generated without Peggy!

— So interaction with Peggy is useless.

Here is how.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 625



Analysis (continued)

e Suppose z is a quadratic residue.?

e In each round of interaction with Peggy, the transcript is

a triplet (y,1, 2).

e We present an efficient Bob that generates (y, 4, z) with
the same probability without accessing Peggy.

2By definition, we do not need to consider the other case.
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Analysis (concluded)

: Bob chooses a random 2z € Z;

. Bob chooses a random bit i;

. Bob calculates y = 2%2~* mod n;

. Bob writes (y, 4, z) into the transcript;
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Comments
e Assume z is a quadratic residue.

e In both cases, for (y,1,2), y is a random quadratic

residue, 7 is a random bit, and z is a random number.

e Bob cheats because (y, 1, z) is not generated in the same

order as in the original transcript.
— Bob picks Victor’s challenge first.
— Bob then picks Peggy’s answer.
— Bob finally patches the transcript.
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Comments (concluded)

e So it is not the transcript that convinces Victor, but

that conversation with Peggy is held “on line.”

e The same holds even if the transcript was generated by

a cheating Victor’s interaction with (honest) Peggy.

e But we skip the details.
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Does the Following Work, Too?7
: form=1,2,...,logy,n do
Peggy chooses a random v € Z and sends
y = v? mod n to Victor;
Peggy sends z = uv mod n, where u is a square root of

z; {u? = x mod n.}

Victor checks if 22 = zy mod n;
. end for

. Victor accepts z if Line 4 is confirmed every time;

2Contributed by Mr. Chih-Duo Hong (R95922079) on December 13,
2006. It is like always choosing ¢ = 1 in the original protocol.
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Does the Following Work, Too?* (concluded)

Suppose x is a quadratic nonresidue.

But Peggy can mislead Victor into accepting = as a

quadratic residue.
She simply sends y = x and z = x to Victor.
e This pair will satisfy 22 = 2y mod n by construction.

e The protocol is hence not even an IP protocol!

2Contributed by Mr. Chin-Luei Chang (D95922007) on June 16, 2008.
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