
The Secret-Key Agreement Problem

• Exchanging messages securely using a private-key
cryptosystem requires Alice and Bob possessing the
same key (p. 568).

• How can they agree on the same secret key when the
channel is insecure?

• This is called the secret-key agreement problem.

• It was solved by Diffie and Hellman (1976) using
one-way functions.
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The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive
root g of p; {p and g are public.}

2: Alice chooses a large number a at random;
3: Alice computes α = ga mod p;
4: Bob chooses a large number b at random;
5: Bob computes β = gb mod p;
6: Alice sends α to Bob, and Bob sends β to Alice;
7: Alice computes her key βa mod p;
8: Bob computes his key αb mod p;
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Analysis

• The keys computed by Alice and Bob are identical:

βa = gba = gab = αb mod p.

• To compute the common key from p, g, α, β is known as
the Diffie-Hellman problem.

• It is conjectured to be hard.

• If discrete logarithm is easy, then one can solve the
Diffie-Hellman problem.

– Because a and b can then be obtained by Eve.

• But the other direction is still open.
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A Parallel History

• Diffie and Hellman’s solution to the secret-key
agreement problem led to public-key cryptography.

• At around the same time (or earlier) in Britain, the
RSA public-key cryptosystem was invented first before
the Diffie-Hellman secret-key agreement scheme was.

– Ellis, Cocks, and Williamson of the Communications
Electronics Security Group of the British Government
Communications Head Quarters (GCHQ).
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Digital Signaturesa

• Alice wants to send Bob a signed document x.

• The signature must unmistakably identifies the sender.

• Both Alice and Bob have public and private keys

eAlice, eBob, dAlice, dBob.

• Assume the cryptosystem satisfies the commutative property

E(e, D(d, x)) = D(d, E(e, x)). (9)

– As (xd)e = (xe)d, the RSA system satisfies it.

– Every cryptosystem guarantees D(d, E(e, x)) = x.

aDiffie and Hellman (1976).
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Digital Signatures Based on Public-Key Systems

• Alice signs x as
(x,D(dAlice, x)).

• Bob receives (x, y) and verifies the signature by checking

E(eAlice, y) = E(eAlice, D(dAlice, x)) = x

based on Eq. (9).

• The claim of authenticity is founded on the difficulty of
inverting EAlice without knowing the key dAlice.

• Warning: If Alice signs anything presented to her, she
might inadvertently decrypt a ciphertext of hers.
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Probabilistic Encryptiona

• A deterministic cryptosystem can be broken if the
plaintext has a distribution that favors the “easy” cases.

• The ability to forge signatures on even a vanishingly
small fraction of strings of some length is a security
weakness if those strings were the probable ones!

• A scheme may also “leak” partial information.

– Parity of the plaintext, e.g.

• The first solution to the problems of skewed distribution
and partial information was based on the QRA.

aGoldwasser and Micali (1982).
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Shafi Goldwasser (1958–)
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Silvio Micali (1954–)
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The Setup

• Bob publishes n = pq, a product of two distinct primes,
and a quadratic nonresidue y with Jacobi symbol 1.

• Bob keeps secret the factorization of n.

• Alice wants to send bit string b1b2 · · · bk to Bob.

• Alice encrypts the bits by choosing a random quadratic
residue modulo n if bi is 1 and a random quadratic
nonresidue (with Jacobi symbol 1) otherwise.

• A sequence of residues and nonresidues are sent.

• Knowing the factorization of n, Bob can efficiently test
quadratic residuacity and thus read the message.
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A Useful Lemma

Lemma 78 Let n = pq be a product of two distinct primes.
Then a number y ∈ Z∗n is a quadratic residue modulo n if
and only if (y | p) = (y | q) = 1.

• The “only if” part:

– Let x be a solution to x2 = y mod pq.

– Then x2 = y mod p and x2 = y mod q also hold.

– Hence y is a quadratic modulo p and a quadratic
residue modulo q.
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The Proof (concluded)

• The “if” part:

– Let a2
1 = y mod p and a2

2 = y mod q.

– Solve

x = a1 mod p,

x = a2 mod q,

for x with the Chinese remainder theorem.

– As x2 = y mod p, x2 = y mod q, and gcd(p, q) = 1,
we must have x2 = y mod pq.
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The Jacobi Symbol and Quadratic Residuacity Test

• The Legendre symbol can be used as a test for quadratic
residuacity by Lemma 66 (p. 483).

• Lemma 78 (p. 595) says this is not the case with the
Jacobi symbol in general.

• Suppose n = pq is a product of two distinct primes.

• A number y ∈ Z∗n with Jacobi symbol (y | pq) = 1 may
be a quadratic nonresidue modulo n when

(y | p) = (y | q) = −1,

because (y | pq) = (y | p)(y | q).
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The Protocol for Alice

1: for i = 1, 2, . . . , k do
2: Pick r ∈ Z∗n randomly;
3: if bi = 1 then
4: Send r2 mod n; {Jacobi symbol is 1.}
5: else
6: Send r2y mod n; {Jacobi symbol is still 1.}
7: end if
8: end for
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The Protocol for Bob

1: for i = 1, 2, . . . , k do
2: Receive r;
3: if (r | p) = 1 and (r | q) = 1 then
4: bi := 1;
5: else
6: bi := 0;
7: end if
8: end for
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Semantic Security

• This encryption scheme is probabilistic.

• There are a large number of different encryptions of a
given message.

• One is chosen at random by the sender to represent the
message.

• This scheme is both polynomially secure and
semantically secure.
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What Is a Proof?

• A proof convinces a party of a certain claim.

– “xn + yn 6= zn for all x, y, z ∈ Z+ and n > 2.”

– “Graph G is Hamiltonian.”

– “xp = x mod p for prime p and p 6 |x.”

• In mathematics, a proof is a fixed sequence of theorems.

– Think of it as a written examination.

• We will extend a proof to cover a proof process by which
the validity of the assertion is established.

– Recall a job interview or an oral examination.
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Prover and Verifier

• There are two parties to a proof.

– The prover (Peggy).

– The verifier (Victor).

• Given an assertion, the prover’s goal is to convince the
verifier of its validity (completeness).

• The verifier’s objective is to accept only correct
assertions (soundness).

• The verifier usually has an easier job than the prover.

• The setup is very much like the Turing test.a

aTuring (1950).
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Interactive Proof Systems

• An interactive proof for a language L is a sequence of
questions and answers between the two parties.

• At the end of the interaction, the verifier decides
whether the claim is true or false.

• The verifier must be a probabilistic polynomial-time
algorithm.

• The prover runs an exponential-time algorithm.

– If the prover is not more powerful than the verifier,
no interaction is needed.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 603



Interactive Proof Systems (concluded)

• The system decides L if the following two conditions
hold for any common input x.

– If x ∈ L, then the probability that x is accepted by
the verifier is at least 1− 2−| x |.

– If x 6∈ L, then the probability that x is accepted by
the verifier with any prover replacing the original
prover is at most 2−| x |.

• Neither the number of rounds nor the lengths of the
messages can be more than a polynomial of |x |.
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An Interactive Proof
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IPa

• IP is the class of all languages decided by an interactive
proof system.

• When x ∈ L, the completeness condition can be
modified to require that the verifier accepts with
certainty without affecting IP.b

• Similar things cannot be said of the soundness condition
when x 6∈ L.

• Verifier’s coin flips can be public.c

aGoldwasser, Micali, and Rackoff (1985).
bGoldreich, Mansour, and Sipser (1987).
cGoldwasser and Sipser (1989).
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The Relations of IP with Other Classes

• NP ⊆ IP.

– IP becomes NP when the verifier is deterministic.

• BPP ⊆ IP.

– IP becomes BPP when the verifier ignores the
prover’s messages.

• IP actually coincides with PSPACE.a

aShamir (1990).
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Graph Isomorphism

• V1 = V2 = {1, 2, . . . , n}.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

isomorphic if there exists a permutation π on
{1, 2, . . . , n} so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1
∼= G2.

• No known polynomial-time algorithms.

• The problem is in NP (hence IP).

• It is not likely to be NP-complete.a

aSchöning (1987).
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graph nonisomorphism

• V1 = V2 = {1, 2, . . . , n}.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

nonisomorphic if there exist no permutations π on
{1, 2, . . . , n} so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1 6∼= G2.

• Again, no known polynomial-time algorithms.

– It is in coNP, but how about NP or BPP?

– It is not likely to be coNP-complete.

• Surprisingly, graph nonisomorphism ∈ IP.a

aGoldreich, Micali, and Wigderson (1986).
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A 2-Round Algorithm
1: Victor selects a random i ∈ { 1, 2 };
2: Victor selects a random permutation π on { 1, 2, . . . , n };
3: Victor applies π on graph Gi to obtain graph H;

4: Victor sends (G1, H) to Peggy;

5: if G1
∼= H then

6: Peggy sends j = 1 to Victor;

7: else

8: Peggy sends j = 2 to Victor;

9: end if

10: if j = i then

11: Victor accepts;

12: else

13: Victor rejects;

14: end if
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Analysis

• Victor runs in probabilistic polynomial time.

• Suppose G1 6∼= G2.

– Peggy is able to tell which Gi is isomorphic to H.

– So Victor always accepts.

• Suppose G1
∼= G2.

– No matter which i is picked by Victor, Peggy or any

prover sees 2 identical graphs.

– Peggy or any prover with exponential power has only

probability one half of guessing i correctly.

– So Victor erroneously accepts with probability 1/2.

• Repeat the algorithm to obtain the desired probabilities.
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Knowledge in Proofs

• Suppose I know a satisfying assignment to a satisfiable
boolean expression.

• I can convince Alice of this by giving her the assignment.

• But then I give her more knowledge than necessary.

– Alice can claim that she found the assignment!

– Login authentication faces essentially the same issue.

– See
www.wired.com/wired/archive/1.05/atm pr.html

for a famous ATM fraud in the U.S.
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Knowledge in Proofs (concluded)

• Digital signatures authenticate documents but not
individuals.

• They hence do not solve the problem.

• Suppose I always give Alice random bits.

• Alice extracts no knowledge from me by any measure,
but I prove nothing.

• Question 1: Can we design a protocol to convince Alice
(the knowledge) of a secret without revealing anything
extra?

• Question 2: How to define this idea rigorously?
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Zero Knowledge Proofsa

An interactive proof protocol (P, V ) for language L has the
perfect zero-knowledge property if:

• For every verifier V ′, there is an algorithm M with
expected polynomial running time.

• M on any input x ∈ L generates the same probability
distribution as the one that can be observed on the
communication channel of (P, V ′) on input x.

aGoldwasser, Micali, and Rackoff (1985).
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Comments

• Zero knowledge is a property of the prover.

– It is the robustness of the prover against attempts of
the verifier to extract knowledge via interaction.

– The verifier may deviate arbitrarily (but in
polynomial time) from the predetermined program.

– A verifier cannot use the transcript of the interaction
to convince a third-party of the validity of the claim.

– The proof is hence not transferable.
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Comments (continued)

• Whatever a verifier can “learn” from the specified prover
P via the communication channel could as well be
computed from the verifier alone.

• The verifier does not learn anything except “x ∈ L.”

• Zero-knowledge proofs yield no knowledge in the sense
that they can be constructed by the verifier who believes
the statement, and yet these proofs do convince him.
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Comments (continued)

• The “paradox” is resolved by noting that it is not the
transcript of the conversation that convinces the verifier.

• But the fact that this conversation was held “on line.”

• There is no zero-knowledge requirement when x 6∈ L.

• Computational zero-knowledge proofs are based on
complexity assumptions.

– M only needs to generate a distribution that is
computationally indistinguishable from the verifier’s
view of the interaction.
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Comments (concluded)

• It is known that if one-way functions exist, then
zero-knowledge proofs exist for every problem in NP.a

• The verifier can be restricted to the honest one (i.e., it
follows the protocol).b

• The coins can be public.c

aGoldreich, Micali, and Wigderson (1986).
bVadhan (2006).
cVadhan (2006).
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Are You Convinced?

• A newspaper commercial for hair-growing products for
men.

– A (for all practical purposes) bald man has a full
head of hair after 3 months.

• A TV commercial for weight-loss products.

– A (by any reasonable measure) overweight woman
loses 10 kilograms in 10 weeks.
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Quadratic Residuacity

• Let n be a product of two distinct primes.

• Assume extracting the square root of a quadratic residue
modulo n is hard without knowing the factors.

• We next present a zero-knowledge proof for x ∈ Z∗n
being a quadratic residue.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 620



Zero-Knowledge Proof of Quadratic Residuacity

1: for m = 1, 2, . . . , log2 n do
2: Peggy chooses a random v ∈ Z∗n and sends

y = v2 mod n to Victor;
3: Victor chooses a random bit i and sends it to Peggy;
4: Peggy sends z = uiv mod n, where u is a square root

of x; {u2 ≡ x mod n.}
5: Victor checks if z2 ≡ xiy mod n;
6: end for
7: Victor accepts x if Line 5 is confirmed every time;
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A Useful Corollary

Corollary 79 Let n = pq be a product of two distinct
primes. (1) If x and y are both quadratic residues modulo n,
then xy ∈ Z∗n is a quadratic residue modulo n. (2) If x is a
quadratic residue modulo n and y is a quadratic nonresidue
modulo n, then xy ∈ Z∗n is a quadratic nonresidue modulo n.

• Suppose x and y are both quadratic residues modulo n.

• Let x ≡ a2 mod n and y ≡ b2 mod n.

• Now xy is a quadratic residue as xy ≡ (ab)2 mod n.
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The Proof (concluded)

• Suppose x is a quadratic residue modulo n and y is a
quadratic nonresidue modulo n.

• By Lemma 78 (p. 595), (x | p) = (x | q) = 1 but, say,
(y | p) = −1.

• Now xy is a quadratic nonresidue as (xy | p) = −1, again
by Lemma 78 (p. 595).
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Analysis

• Suppose x is a quadratic nonresidue.

– Peggy can answer only one of the two possible
challenges.
∗ If a is a quadratic residue, then xa is a quadratic

nonresidue by Corollary 79 (p. 622).
∗ So xiy can be a quadratic residue (see Line 5) only

when i = 0.

– So Peggy will be caught in any given round with
probability one half.
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Analysis (continued)

• Suppose x is a quadratic residue.

– Peggy can answer all challenges.

– So Victor will accept x.

• How about the claim of zero knowledge?

• The transcript between Peggy and Victor when x is a
quadratic residue can be generated without Peggy!

– So interaction with Peggy is useless.

• Here is how.
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Analysis (continued)

• Suppose x is a quadratic residue.a

• In each round of interaction with Peggy, the transcript is
a triplet (y, i, z).

• We present an efficient Bob that generates (y, i, z) with
the same probability without accessing Peggy.

aBy definition, we do not need to consider the other case.
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Analysis (concluded)

1: Bob chooses a random z ∈ Z∗n;
2: Bob chooses a random bit i;
3: Bob calculates y = z2x−i mod n;
4: Bob writes (y, i, z) into the transcript;
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Comments

• Assume x is a quadratic residue.

• In both cases, for (y, i, z), y is a random quadratic
residue, i is a random bit, and z is a random number.

• Bob cheats because (y, i, z) is not generated in the same
order as in the original transcript.

– Bob picks Victor’s challenge first.

– Bob then picks Peggy’s answer.

– Bob finally patches the transcript.
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Comments (concluded)

• So it is not the transcript that convinces Victor, but
that conversation with Peggy is held “on line.”

• The same holds even if the transcript was generated by
a cheating Victor’s interaction with (honest) Peggy.

• But we skip the details.
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Does the Following Work, Too?a

1: for m = 1, 2, . . . , log2 n do
2: Peggy chooses a random v ∈ Z∗n and sends

y = v2 mod n to Victor;
3: Peggy sends z = uv mod n, where u is a square root of

x; {u2 ≡ x mod n.}
4: Victor checks if z2 ≡ xy mod n;
5: end for
6: Victor accepts x if Line 4 is confirmed every time;

aContributed by Mr. Chih-Duo Hong (R95922079) on December 13,

2006. It is like always choosing i = 1 in the original protocol.
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Does the Following Work, Too?a (concluded)

• Suppose x is a quadratic nonresidue.

• But Peggy can mislead Victor into accepting x as a
quadratic residue.

• She simply sends y = x and z = x to Victor.

• This pair will satisfy z2 ≡ xy mod n by construction.

• The protocol is hence not even an IP protocol!
aContributed by Mr. Chin-Luei Chang (D95922007) on June 16, 2008.
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