BPP’'s Circuit Complexity

Theorem 77 (Adleman (1978)) All languages in BPP

have polynomaal circuits.

e Our proof will be nonconstructive in that only the

existence of the desired circuits is shown.
— Recall our proof of Theorem 14 (p. 164).

— Something exists if its probability of existence is

Nonzero.
e It is not known how to efficiently generate circuit C),.

e If the construction of C,, can be made efficient, then
P = BPP, an unlikely result.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 546

The Proof
Let L € BPP be decided by a precise NTM N by clear

majority.
We shall prove that L has polynomial circuits Cy, (4,

Suppose N runs in time p(n), where p(n) is a

polynomial.

Let A, = {a1,as,...,a,}, where a; € {0,1}P(").

Pick m = 12(n 4+ 1).

Each a; € A,, represents a sequence of nondeterministic
choices (i.e., a computation path) for N.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 547

The Proof (continued)

Let z be an input with |z | = n.

Circuit C,, simulates N on x with each sequence of
choices in A,, and then takes the majority of the m

outcomes.

Because N with a; is a polynomial-time TM, it can be
simulated by polynomial circuits of size O(p(n)?).

— See the proof of Proposition 75 (p. 539).
The size of C,, is therefore O(mp(n)?) = O(np(n)?).

— This is a polynomial.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 548

The Circuit

Majority logic

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 549

The Proof (continued)

We now prove the existence of an A,, making (), correct

on all inputs.

Call a; bad if it leads N to a false positive or a false

negative.
Select A,, uniformly randomly.

For each x € {0,1}", 1/4 of the computations of N are

erroneous.

Because the sequences in A,, are chosen randomly and

independently, the expected number of bad a;’s is m /4.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 550

The Proof (continued)
By the Chernoff bound (p. 521), the probability that the

number of bad a;’s is m/2 or more is at most

e—m/12 < 2—(n—i—1) .

The error probability is < 27 ("1 for each = € {0,1}".

The probability that there is an x such that A,, results

in an incorrect answer is < 272~ (n+1) — 9—1

— prob[AUBU---] < prob[A] + prob|B]+ - --
Note that each A,, yields a circuit.

We just showed that at least half of them are correct.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 551

The Proof (concluded)

So with probability > 0.5, a random A,, produces a

correct C,, for all inputs of length n.

Because this probability exceeds 0, an A,, that makes

majority vote work for all inputs of length n exists.
Hence a correct C,, exists.?

e We have used the probabilistic method.

2Quine (1948), “To be is to be the value of a bound variable.”

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 552

Lengths of Boolean Formulas for the Threshold Function

Define the boolean function Ty (x1,...,2,) to be 1 if at
least k£ of the x;’s are 1s, and 0 otherwise.

Trivially, a formula of size O((})) exists.

Surprisingly, for any k, there exists a constant c; such
that Ty (x1,...,2,) has formula size at most cipnlog, n.

The construction is again probabilistic, not constructive.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 553

Lengths of Boolean Formulas for the Threshold Function (continued)
e We will verify the kK = 3 case below.

e Suppose we construct the formula of the form

F=FV---VF.

e Fach Fj is constructed randomly and takes the form:

— By the distribution law,

(g VasV---)AN(byVbyV---)A(c1 Ve V---
= (a1 AbyAc1)V(ag Abi Aecg)Ve-- .

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 554

Lengths of Boolean Formulas for the Threshold Function (continued)
Each z; is placed into one of the brackets at random.
Each F; has exactly n variables.

Clearly, all the monomials of F' are of the form

x, N\ xp N\ 2. for distinct a, b, c.

But T3 has (g’) monomials.

We shall show, if r is large enough, all (g) monomials

will appear with high probability.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 555

Lengths of Boolean Formulas for the Threshold Function (continued)

e The probability that any given monomial z, A xp A x.
appears in a given F; is the probability that z,, xp, x.
are thrown into distinct brackets.

The probability is hence equal to (2/3)(1/3) = 2/9.

The probability that x, A xp A . is not a monomial of
Ffi’S 1S (7/9)7“

Therefore, the probability that at least one of the

(3) < n® monomials is missing from all the F;’s is at

most n>(7/9)".

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 556

Lengths of Boolean Formulas for the Threshold Function (concluded)
e This probability is less than one when n3(7/9)" < 1.

e When this happens, F' includes all (g) monomials, and

F' has size < rn.

In particular, with r = —log; 9 2n°, the probability that
F # T3 is at most 1/2.

In other words, the probability of that F' = 13 is at least
1/2.

Hence a formula of size O(nlogn) exists.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 557

Finding Short Formulas for the Threshold Function

e Our analysis implies an expected polynomial-time
randomized algorithm to find such a formula (for T3).

Generate F' randomly as described.

In O((3)) = O(n?) time, evaluate F with every n-bit

truth assignment with three 1’s and check if F' = 1.

In O((4)) = O(n?) time, evaluate F with every n-bit
truth assignment with two 1’s and check if F' = 0.

In O(n) time, evaluate F' with every n-bit truth
assignment with one 1 and check if F' = 0.

Check if F' = 0 with the all-0 truth assignment.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 558

Finding Short Formulas for the Threshold Function (concluded)

If F' passes all the tests, return F'.
— No need to check if F' =1 when the truth assignment

contains more than three 1’s because F' is monotone.?
e Otherwise, repeat the experiment.

Clearly, the expected running time to find a valid

formula is proportional to

n® +(1/2)n® + (1/2)*n® +--- = O(n?).

#Thanks to a lively class discussion on December 8, 2009.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 559

Cryptography

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 560

Whoever wishes to keep a secret

must hide the fact that he possesses one.
— Johann Wolfgang von Goethe (1749-1832)

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 561

Cryptography

e Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

e The protocol should be such that the message is known
only to Alice and Bob.

e The art and science of keeping messages secure is

cryptography.
Eve
Alice > Bob

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 562

Encryption and Decryption

Alice and Bob agree on two algorithms £ and D—the
encryption and the decryption algorithms.

Both E and D are known to the public in the analysis.
Alice runs E and wants to send a message x to Bob.
Bob operates D.

Privacy is assured in terms of two numbers e, d, the
encryption and decryption keys.

Alice sends y = E(e,x) to Bob, who then performs
D(d,y) = x to recover .

e 1 is called plaintext, and y is called ciphertext.?

aBoth “zero” and “cipher” come from the same Arab word.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 563

Some Requirements

e D should be an inverse of F given e and d.

e D and E must both run in (probabilistic) polynomial

time.

e Eve should not be able to recover x from y without
knowing d.
— As D is public, d must be kept secret.

— e may or may not be a secret.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 564

Degrees of Security

e Perfect secrecy: After a ciphertext is intercepted by
the enemy, the a posteriori probabilities of the plaintext
that this ciphertext represents are identical to the a
priori probabilities of the same plaintext before the

interception.

— The probability that plaintext P occurs is
independent of the ciphertext C being observed.

— So knowing C yields no advantage in recovering P.
e Such systems are said to be informationally secure.

e A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 565

Conditions for Perfect Secrecy?

e Consider a cryptosystem where:
— The space of ciphertext is as large as that of keys.
— Every plaintext has a nonzero probability of being
used.
e It is perfectly secure if and only if the following hold.
— A key is chosen with uniform distribution.

— For each plaintext x and ciphertext y, there exists a

unique key e such that F(e,z) = y.

2Shannon (1949).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 566

The One-Time Pad?

. Alice generates a random string r as long as x;

. Alice sends r to Bob over a secret channel;

. Alice sends r @ x to Bob over a public channel;
. Bob receives y;

: Bob recovers x := y & r;

*Mauborgne and Vernam (1917); Shannon (1949). It was allegedly
used for the hotline between Russia and U.S.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 567

Analysis

The one-time pad uses e =d =r.
This is said to be a private-key cryptosystem.
Knowing x and knowing r are equivalent.

Because r is random and private, the one-time pad

achieves perfect secrecy (see also p. 566).

The random bit string must be new for each round of
communication.
— Cryptographically strong pseudorandom

generators require exchanging only the seed once.

The assumption of a private channel is problematic.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 568

Public-Key Cryptography?

Suppose only d is private to Bob, whereas e is public

knowledge.

Bob generates the (e, d) pair and publishes e.
Anybody like Alice can send E(e,) to Bob.
Knowing d, Bob can recover x by D(d, E(e,z)) = x.

The assumptions are complexity-theoretic.
— It is computationally difficult to compute d from e.

— It is computationally difficult to compute x from y

without knowing d.

2Diffie and Hellman (1976).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 569

Whitfield Diffie (1944-)

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 570

Martin Hellman (1945-)

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 571

Complexity Issues

Given y and x, it is easy to verify whether E(e,z) = v.
Hence one can always guess an x and verify.
Cracking a public-key cryptosystem is thus in NP.

A necessary condition for the existence of secure

public-key cryptosystems is P # NP.
But more is needed than P # NP.

For instance, it is not sufficient that D is hard to

compute in the worst case.

It should be hard in “most” or “average” cases.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 572

One-Way Functions
A function f is a one-way function if the following hold.?

1. f is one-to-one.

2. For all z € 2%, |x |V/* < |f(x)| < |2 |F for some k > 0.

e f is said to be honest.
3. f can be computed in polynomial time.

4. f~! cannot be computed in polynomial time.

e Eixhaustive search works, but it is too slow.

2Diffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann
and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe
(1985); Young (1983).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 573

Existence of One-Way Functions

e Even if P # NP, there is no guarantee that one-way

functions exist.
e No functions have been proved to be one-way.

e Is breaking glass a one-way function?

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 574

Candidates of One-Way Functions

e Modular exponentiation f(x) = ¢ mod p, where g is a

primitive root of p.

— Discrete logarithm is hard.?

e The RSAP function f(x) = 2¢ mod pq for an odd e

relatively prime to ¢(pq).
— Breaking the RSA function is hard.

2Conjectured to be 21" for some € > 0 in both the worst-case sense
and average sense. It is in NP in some sense (Grollmann and Selman

(1988)).
PRivest, Shamir, and Adleman (1978).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 575

Candidates of One-Way Functions (concluded)

e Modular squaring f(z) = 2% mod pq.

— Determining if a number with a Jacobi symbol 1 is a
quadratic residue is hard—the quadratic

residuacity assumption (QRA).?

2Due to Gauss.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 576

The RSA Function

e Let p,q be two distinct primes.

e The RSA function is ¢ mod pq for an odd e relatively
prime to ¢(pq).
— By Lemma 54 (p. 405),

1

o(pq) = pq (1 -

e As ged(e, d(pq)) = 1, there is a d such that
ed = 1 mod ¢(pq),

which can be found by the Euclidean algorithm.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 577

Adi Shamir, Ron Rivest, and Leonard Adleman

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 578

Ron Rivest (1947-)

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 579

Adi Shamir (1952-)

2 :—&L:x =

That -

i P
=

e = —
e - —

i’
LT

3
bii
3
‘h :
u;
)

e e ol

e

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 580

Leonard Adleman (1945-)

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 581

A Public-Key Cryptosystem Based on RSA

Bob generates p and q.

Bob publishes pg and the encryption key e, a number

relatively prime to ¢(pq).

— The encryption function is y = x° mod pq.

— Bob calculates ¢(pq) by Eq. (8) (p. 577).

— Bob then calculates d such that ed = 1 + k¢(pq) for
some k € Z.

The decryption function is y¢ mod pq.

It works because y% = ¢4 = z115¢(P?0) = x mod pq by
the Fermat-Euler theorem when ged(z, pg) =1 (p. 413).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 582

The “Security” of the RSA Function

e Factoring pq or calculating d from (e, pq) seems hard.

— See also p. 409.

e Breaking the last bit of RSA is as hard as breaking the
RSA.?

e Recommended RSA key sizes:P

— 1024 bits up to 2010.
— 2048 bits up to 2030.
— 3072 bits up to 2031 and beyond.

2 Alexi, Chor, Goldreich, and Schnorr (1988).
PRSA (2003).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 583

The “Security” of the RSA Function (concluded)
Recall that problem A is “harder than” problem B if
solving A results in solving B.

Factorization is “harder than” breaking the RSA.

Calculating Euler’s phi function is “harder than”
breaking the RSA.

Factorization is “harder than” calculating Euler’s phi

function (see Lemma 54 on p. 405).

So factorization is hardest, followed by calculating
Euler’s phi function, followed by breaking the RSA.

e Factorization cannot be NP-hard unless NP = coNP.?

e So breaking the RSA is unlikely to imply P = NP.
2Brassard (1979).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 584

