
BPP’s Circuit Complexity

Theorem 77 (Adleman (1978)) All languages in BPP
have polynomial circuits.

• Our proof will be nonconstructive in that only the
existence of the desired circuits is shown.

– Recall our proof of Theorem 14 (p. 164).

– Something exists if its probability of existence is
nonzero.

• It is not known how to efficiently generate circuit Cn.

• If the construction of Cn can be made efficient, then
P = BPP, an unlikely result.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 546

The Proof

• Let L ∈ BPP be decided by a precise NTM N by clear
majority.

• We shall prove that L has polynomial circuits C0, C1,

• Suppose N runs in time p(n), where p(n) is a
polynomial.

• Let An = {a1, a2, . . . , am}, where ai ∈ {0, 1}p(n).

• Pick m = 12(n + 1).

• Each ai ∈ An represents a sequence of nondeterministic
choices (i.e., a computation path) for N .

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 547

The Proof (continued)

• Let x be an input with |x | = n.

• Circuit Cn simulates N on x with each sequence of
choices in An and then takes the majority of the m

outcomes.

• Because N with ai is a polynomial-time TM, it can be
simulated by polynomial circuits of size O(p(n)2).

– See the proof of Proposition 75 (p. 539).

• The size of Cn is therefore O(mp(n)2) = O(np(n)2).

– This is a polynomial.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 548

The Circuit

DP
D�

D� D�

0DMRULW\�ORJLF

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 549

The Proof (continued)

• We now prove the existence of an An making Cn correct
on all inputs.

• Call ai bad if it leads N to a false positive or a false
negative.

• Select An uniformly randomly.

• For each x ∈ {0, 1}n, 1/4 of the computations of N are
erroneous.

• Because the sequences in An are chosen randomly and
independently, the expected number of bad ai’s is m/4.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 550

The Proof (continued)

• By the Chernoff bound (p. 521), the probability that the
number of bad ai’s is m/2 or more is at most

e−m/12 < 2−(n+1).

• The error probability is < 2−(n+1) for each x ∈ {0, 1}n.

• The probability that there is an x such that An results
in an incorrect answer is < 2n2−(n+1) = 2−1.

– prob[A ∪B ∪ · · ·] ≤ prob[A] + prob[B] + · · · .
• Note that each An yields a circuit.

• We just showed that at least half of them are correct.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 551

The Proof (concluded)

• So with probability ≥ 0.5, a random An produces a
correct Cn for all inputs of length n.

• Because this probability exceeds 0, an An that makes
majority vote work for all inputs of length n exists.

• Hence a correct Cn exists.a

• We have used the probabilistic method.
aQuine (1948), “To be is to be the value of a bound variable.”

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 552

Lengths of Boolean Formulas for the Threshold Function

• Define the boolean function Tk(x1, . . . , xn) to be 1 if at
least k of the xi’s are 1s, and 0 otherwise.

• Trivially, a formula of size O(
(
n
k

)
) exists.

• Surprisingly, for any k, there exists a constant ck such
that Tk(x1, . . . , xn) has formula size at most ckn log2 n.

• The construction is again probabilistic, not constructive.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 553

Lengths of Boolean Formulas for the Threshold Function (continued)

• We will verify the k = 3 case below.

• Suppose we construct the formula of the form

F = F1 ∨ · · · ∨ Fr.

• Each Fi is constructed randomly and takes the form:

Fi = (∨ · · ·) ∧ (∨ · · ·) ∧ (∨ · · ·).

– By the distribution law,

(a1 ∨ a2 ∨ · · ·) ∧ (b1 ∨ b2 ∨ · · ·) ∧ (c1 ∨ c2 ∨ · · ·)
= (a1 ∧ b1 ∧ c1) ∨ (a1 ∧ b1 ∧ c2) ∨ · · · .

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 554

Lengths of Boolean Formulas for the Threshold Function (continued)

• Each xj is placed into one of the brackets at random.

• Each Fi has exactly n variables.

• Clearly, all the monomials of F are of the form
xa ∧ xb ∧ xc for distinct a, b, c.

• But T3 has
(
n
3

)
monomials.

• We shall show, if r is large enough, all
(
n
3

)
monomials

will appear with high probability.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 555

Lengths of Boolean Formulas for the Threshold Function (continued)

• The probability that any given monomial xa ∧ xb ∧ xc

appears in a given Fi is the probability that xa, xb, xc

are thrown into distinct brackets.

• The probability is hence equal to (2/3)(1/3) = 2/9.

• The probability that xa ∧ xb ∧ xc is not a monomial of
Fi’s is (7/9)r.

• Therefore, the probability that at least one of the(
n
3

) ≤ n3 monomials is missing from all the Fi’s is at
most n3(7/9)r.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 556

Lengths of Boolean Formulas for the Threshold Function (concluded)

• This probability is less than one when n3(7/9)r < 1.

• When this happens, F includes all
(
n
3

)
monomials, and

F has size < rn.

• In particular, with r = − log7/9 2n3, the probability that
F 6= T3 is at most 1/2.

• In other words, the probability of that F = T3 is at least
1/2.

• Hence a formula of size O(n log n) exists.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 557

Finding Short Formulas for the Threshold Function

• Our analysis implies an expected polynomial-time
randomized algorithm to find such a formula (for T3).

• Generate F randomly as described.

• In O(
(
n
3

)
) = O(n3) time, evaluate F with every n-bit

truth assignment with three 1’s and check if F = 1.

• In O(
(
n
2

)
) = O(n2) time, evaluate F with every n-bit

truth assignment with two 1’s and check if F = 0.

• In O(n) time, evaluate F with every n-bit truth
assignment with one 1 and check if F = 0.

• Check if F = 0 with the all-0 truth assignment.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 558

Finding Short Formulas for the Threshold Function (concluded)

• If F passes all the tests, return F .

– No need to check if F = 1 when the truth assignment
contains more than three 1’s because F is monotone.a

• Otherwise, repeat the experiment.

• Clearly, the expected running time to find a valid
formula is proportional to

n3 + (1/2) n3 + (1/2)2 n3 + · · · = O(n3).

aThanks to a lively class discussion on December 8, 2009.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 559

Cryptography

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 560

Whoever wishes to keep a secret
must hide the fact that he possesses one.

— Johann Wolfgang von Goethe (1749–1832)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 561

Cryptography

• Alice (A) wants to send a message to Bob (B) over a
channel monitored by Eve (eavesdropper).

• The protocol should be such that the message is known
only to Alice and Bob.

• The art and science of keeping messages secure is
cryptography.

Alice -
Eve

Bob

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 562

Encryption and Decryption

• Alice and Bob agree on two algorithms E and D—the
encryption and the decryption algorithms.

• Both E and D are known to the public in the analysis.

• Alice runs E and wants to send a message x to Bob.

• Bob operates D.

• Privacy is assured in terms of two numbers e, d, the
encryption and decryption keys.

• Alice sends y = E(e, x) to Bob, who then performs
D(d, y) = x to recover x.

• x is called plaintext, and y is called ciphertext.a

aBoth “zero” and “cipher” come from the same Arab word.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 563

Some Requirements

• D should be an inverse of E given e and d.

• D and E must both run in (probabilistic) polynomial
time.

• Eve should not be able to recover x from y without
knowing d.

– As D is public, d must be kept secret.

– e may or may not be a secret.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 564

Degrees of Security

• Perfect secrecy: After a ciphertext is intercepted by
the enemy, the a posteriori probabilities of the plaintext
that this ciphertext represents are identical to the a
priori probabilities of the same plaintext before the
interception.

– The probability that plaintext P occurs is
independent of the ciphertext C being observed.

– So knowing C yields no advantage in recovering P.

• Such systems are said to be informationally secure.

• A system is computationally secure if breaking it is
theoretically possible but computationally infeasible.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 565

Conditions for Perfect Secrecya

• Consider a cryptosystem where:

– The space of ciphertext is as large as that of keys.

– Every plaintext has a nonzero probability of being
used.

• It is perfectly secure if and only if the following hold.

– A key is chosen with uniform distribution.

– For each plaintext x and ciphertext y, there exists a
unique key e such that E(e, x) = y.

aShannon (1949).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 566

The One-Time Pada

1: Alice generates a random string r as long as x;
2: Alice sends r to Bob over a secret channel;
3: Alice sends r ⊕ x to Bob over a public channel;
4: Bob receives y;
5: Bob recovers x := y ⊕ r;

aMauborgne and Vernam (1917); Shannon (1949). It was allegedly

used for the hotline between Russia and U.S.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 567

Analysis

• The one-time pad uses e = d = r.

• This is said to be a private-key cryptosystem.

• Knowing x and knowing r are equivalent.

• Because r is random and private, the one-time pad
achieves perfect secrecy (see also p. 566).

• The random bit string must be new for each round of
communication.

– Cryptographically strong pseudorandom
generators require exchanging only the seed once.

• The assumption of a private channel is problematic.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 568

Public-Key Cryptographya

• Suppose only d is private to Bob, whereas e is public
knowledge.

• Bob generates the (e, d) pair and publishes e.

• Anybody like Alice can send E(e, x) to Bob.

• Knowing d, Bob can recover x by D(d,E(e, x)) = x.

• The assumptions are complexity-theoretic.

– It is computationally difficult to compute d from e.

– It is computationally difficult to compute x from y

without knowing d.
aDiffie and Hellman (1976).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 569

Whitfield Diffie (1944–)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 570

Martin Hellman (1945–)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 571

Complexity Issues

• Given y and x, it is easy to verify whether E(e, x) = y.

• Hence one can always guess an x and verify.

• Cracking a public-key cryptosystem is thus in NP.

• A necessary condition for the existence of secure
public-key cryptosystems is P 6= NP.

• But more is needed than P 6= NP.

• For instance, it is not sufficient that D is hard to
compute in the worst case.

• It should be hard in “most” or “average” cases.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 572

One-Way Functions

A function f is a one-way function if the following hold.a

1. f is one-to-one.

2. For all x ∈ Σ∗, |x |1/k ≤ |f(x)| ≤ |x |k for some k > 0.

• f is said to be honest.

3. f can be computed in polynomial time.

4. f−1 cannot be computed in polynomial time.

• Exhaustive search works, but it is too slow.
aDiffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann

and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe

(1985); Young (1983).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 573

Existence of One-Way Functions

• Even if P 6= NP, there is no guarantee that one-way
functions exist.

• No functions have been proved to be one-way.

• Is breaking glass a one-way function?

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 574

Candidates of One-Way Functions

• Modular exponentiation f(x) = gx mod p, where g is a
primitive root of p.

– Discrete logarithm is hard.a

• The RSAb function f(x) = xe mod pq for an odd e

relatively prime to φ(pq).

– Breaking the RSA function is hard.

aConjectured to be 2nε
for some ε > 0 in both the worst-case sense

and average sense. It is in NP in some sense (Grollmann and Selman

(1988)).
bRivest, Shamir, and Adleman (1978).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 575

Candidates of One-Way Functions (concluded)

• Modular squaring f(x) = x2 mod pq.

– Determining if a number with a Jacobi symbol 1 is a
quadratic residue is hard—the quadratic
residuacity assumption (QRA).a

aDue to Gauss.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 576

The RSA Function

• Let p, q be two distinct primes.

• The RSA function is xe mod pq for an odd e relatively
prime to φ(pq).

– By Lemma 54 (p. 405),

φ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= pq − p− q + 1. (8)

• As gcd(e, φ(pq)) = 1, there is a d such that

ed ≡ 1 mod φ(pq),

which can be found by the Euclidean algorithm.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 577

Adi Shamir, Ron Rivest, and Leonard Adleman

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 578

Ron Rivest (1947–)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 579

Adi Shamir (1952–)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 580

Leonard Adleman (1945–)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 581

A Public-Key Cryptosystem Based on RSA

• Bob generates p and q.

• Bob publishes pq and the encryption key e, a number
relatively prime to φ(pq).

– The encryption function is y = xe mod pq.

– Bob calculates φ(pq) by Eq. (8) (p. 577).

– Bob then calculates d such that ed = 1 + kφ(pq) for
some k ∈ Z.

• The decryption function is yd mod pq.

• It works because yd = xed = x1+kφ(pq) = x mod pq by
the Fermat-Euler theorem when gcd(x, pq) = 1 (p. 413).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 582

The “Security” of the RSA Function

• Factoring pq or calculating d from (e, pq) seems hard.

– See also p. 409.

• Breaking the last bit of RSA is as hard as breaking the
RSA.a

• Recommended RSA key sizes:b

– 1024 bits up to 2010.

– 2048 bits up to 2030.

– 3072 bits up to 2031 and beyond.
aAlexi, Chor, Goldreich, and Schnorr (1988).
bRSA (2003).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 583

The “Security” of the RSA Function (concluded)

• Recall that problem A is “harder than” problem B if
solving A results in solving B.

– Factorization is “harder than” breaking the RSA.

– Calculating Euler’s phi function is “harder than”
breaking the RSA.

– Factorization is “harder than” calculating Euler’s phi
function (see Lemma 54 on p. 405).

– So factorization is hardest, followed by calculating
Euler’s phi function, followed by breaking the RSA.

• Factorization cannot be NP-hard unless NP = coNP.a

• So breaking the RSA is unlikely to imply P = NP.
aBrassard (1979).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 584

