BPP's Circuit Complexity

Theorem 77 (Adleman (1978)) All languages in BPP have polynomial circuits.

- Our proof will be nonconstructive in that only the existence of the desired circuits is shown.
- Recall our proof of Theorem 14 (p. 164).
- Something exists if its probability of existence is nonzero.
- It is not known how to efficiently generate circuit C_{n}.
- If the construction of C_{n} can be made efficient, then $\mathrm{P}=\mathrm{BPP}$, an unlikely result.

The Proof

- Let $L \in \mathrm{BPP}$ be decided by a precise NTM N by clear majority.
- We shall prove that L has polynomial circuits C_{0}, C_{1}, \ldots.
- Suppose N runs in time $p(n)$, where $p(n)$ is a polynomial.
- Let $A_{n}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, where $a_{i} \in\{0,1\}^{p(n)}$.
- Pick $m=12(n+1)$.
- Each $a_{i} \in A_{n}$ represents a sequence of nondeterministic choices (i.e., a computation path) for N.

The Proof (continued)

- Let x be an input with $|x|=n$.
- Circuit C_{n} simulates N on x with each sequence of choices in A_{n} and then takes the majority of the m outcomes.
- Because N with a_{i} is a polynomial-time TM, it can be simulated by polynomial circuits of size $O\left(p(n)^{2}\right)$.
- See the proof of Proposition 75 (p. 539).
- The size of C_{n} is therefore $O\left(m p(n)^{2}\right)=O\left(n p(n)^{2}\right)$.
- This is a polynomial.

The Proof (continued)

- We now prove the existence of an A_{n} making C_{n} correct on all inputs.
- Call a_{i} bad if it leads N to a false positive or a false negative.
- Select A_{n} uniformly randomly.
- For each $x \in\{0,1\}^{n}, 1 / 4$ of the computations of N are erroneous.
- Because the sequences in A_{n} are chosen randomly and independently, the expected number of bad a_{i} 's is $m / 4$.

The Proof (continued)

- By the Chernoff bound (p. 521), the probability that the number of bad a_{i} 's is $m / 2$ or more is at most

$$
e^{-m / 12}<2^{-(n+1)}
$$

- The error probability is $<2^{-(n+1)}$ for each $x \in\{0,1\}^{n}$.
- The probability that there is an x such that A_{n} results in an incorrect answer is $<2^{n} 2^{-(n+1)}=2^{-1}$.

$$
-\operatorname{prob}[A \cup B \cup \cdots] \leq \operatorname{prob}[A]+\operatorname{prob}[B]+\cdots .
$$

- Note that each A_{n} yields a circuit.
- We just showed that at least half of them are correct.

The Proof (concluded)

- So with probability ≥ 0.5, a random A_{n} produces a correct C_{n} for all inputs of length n.
- Because this probability exceeds 0 , an A_{n} that makes majority vote work for all inputs of length n exists.
- Hence a correct C_{n} exists. ${ }^{\text {a }}$
- We have used the probabilistic method.

[^0]
Lengths of Boolean Formulas for the Threshold Function

- Define the boolean function $T_{k}\left(x_{1}, \ldots, x_{n}\right)$ to be 1 if at least k of the x_{i} 's are 1 s , and 0 otherwise.
- Trivially, a formula of size $O\left(\binom{n}{k}\right)$ exists.
- Surprisingly, for any k, there exists a constant c_{k} such that $T_{k}\left(x_{1}, \ldots, x_{n}\right)$ has formula size at most $c_{k} n \log _{2} n$.
- The construction is again probabilistic, not constructive.

Lengths of Boolean Formulas for the Threshold Function (continued)

- We will verify the $k=3$ case below.
- Suppose we construct the formula of the form

$$
F=F_{1} \vee \cdots \vee F_{r}
$$

- Each F_{i} is constructed randomly and takes the form:

$$
F_{i}=(\vee \cdots) \wedge(\vee \cdots) \wedge(\vee \cdots)
$$

- By the distribution law,

$$
\begin{aligned}
& \left(a_{1} \vee a_{2} \vee \cdots\right) \wedge\left(b_{1} \vee b_{2} \vee \cdots\right) \wedge\left(c_{1} \vee c_{2} \vee \cdots\right) \\
= & \left(a_{1} \wedge b_{1} \wedge c_{1}\right) \vee\left(a_{1} \wedge b_{1} \wedge c_{2}\right) \vee \cdots
\end{aligned}
$$

Lengths of Boolean Formulas for the Threshold Function (continued)

- Each x_{j} is placed into one of the brackets at random.
- Each F_{i} has exactly n variables.
- Clearly, all the monomials of F are of the form $x_{a} \wedge x_{b} \wedge x_{c}$ for distinct a, b, c.
- But T_{3} has $\binom{n}{3}$ monomials.
- We shall show, if r is large enough, all $\binom{n}{3}$ monomials will appear with high probability.

Lengths of Boolean Formulas for the Threshold Function (continued)

- The probability that any given monomial $x_{a} \wedge x_{b} \wedge x_{c}$ appears in a given F_{i} is the probability that x_{a}, x_{b}, x_{c} are thrown into distinct brackets.
- The probability is hence equal to $(2 / 3)(1 / 3)=2 / 9$.
- The probability that $x_{a} \wedge x_{b} \wedge x_{c}$ is not a monomial of F_{i} 's is $(7 / 9)^{r}$.
- Therefore, the probability that at least one of the $\binom{n}{3} \leq n^{3}$ monomials is missing from all the F_{i} 's is at most $n^{3}(7 / 9)^{r}$.

Lengths of Boolean Formulas for the Threshold Function (concluded)

- This probability is less than one when $n^{3}(7 / 9)^{r}<1$.
- When this happens, F includes all $\binom{n}{3}$ monomials, and F has size $<r n$.
- In particular, with $r=-\log _{7 / 9} 2 n^{3}$, the probability that $F \neq T_{3}$ is at most $1 / 2$.
- In other words, the probability of that $F=T_{3}$ is at least $1 / 2$.
- Hence a formula of size $O(n \log n)$ exists.

Finding Short Formulas for the Threshold Function

- Our analysis implies an expected polynomial-time randomized algorithm to find such a formula (for T_{3}).
- Generate F randomly as described.
- In $O\left(\binom{n}{3}\right)=O\left(n^{3}\right)$ time, evaluate F with every n-bit truth assignment with three 1 's and check if $F=1$.
- In $O\left(\binom{n}{2}\right)=O\left(n^{2}\right)$ time, evaluate F with every n-bit truth assignment with two 1's and check if $F=0$.
- In $O(n)$ time, evaluate F with every n-bit truth assignment with one 1 and check if $F=0$.
- Check if $F=0$ with the all-0 truth assignment.

Finding Short Formulas for the Threshold Function (concluded)

- If F passes all the tests, return F.
- No need to check if $F=1$ when the truth assignment contains more than three 1's because F is monotone. ${ }^{\text {a }}$
- Otherwise, repeat the experiment.
- Clearly, the expected running time to find a valid formula is proportional to

$$
n^{3}+(1 / 2) n^{3}+(1 / 2)^{2} n^{3}+\cdots=O\left(n^{3}\right)
$$

${ }^{\text {a }}$ Thanks to a lively class discussion on December 8, 2009.

Cryptography

Whoever wishes to keep a secret must hide the fact that he possesses one. - Johann Wolfgang von Goethe (1749-1832)

Cryptography

- Alice (A) wants to send a message to Bob (B) over a channel monitored by Eve (eavesdropper).
- The protocol should be such that the message is known only to Alice and Bob.
- The art and science of keeping messages secure is cryptography.

$$
\text { Alice } \xrightarrow{\text { Eve }} \text { Bob }
$$

Encryption and Decryption

- Alice and Bob agree on two algorithms E and D-the encryption and the decryption algorithms.
- Both E and D are known to the public in the analysis.
- Alice runs E and wants to send a message x to Bob.
- Bob operates D.
- Privacy is assured in terms of two numbers e, d, the encryption and decryption keys.
- Alice sends $y=E(e, x)$ to Bob, who then performs $D(d, y)=x$ to recover x.
- x is called plaintext, and y is called ciphertext. ${ }^{\text {a }}$

[^1]
Some Requirements

- D should be an inverse of E given e and d.
- D and E must both run in (probabilistic) polynomial time.
- Eve should not be able to recover x from y without knowing d.
- As D is public, d must be kept secret.
- e may or may not be a secret.

Degrees of Security

- Perfect secrecy: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.
- The probability that plaintext \mathcal{P} occurs is independent of the ciphertext \mathcal{C} being observed.
- So knowing \mathcal{C} yields no advantage in recovering \mathcal{P}.
- Such systems are said to be informationally secure.
- A system is computationally secure if breaking it is theoretically possible but computationally infeasible.

Conditions for Perfect Secrecy ${ }^{\text {a }}$

- Consider a cryptosystem where:
- The space of ciphertext is as large as that of keys.
- Every plaintext has a nonzero probability of being used.
- It is perfectly secure if and only if the following hold.
- A key is chosen with uniform distribution.
- For each plaintext x and ciphertext y, there exists a unique key e such that $E(e, x)=y$.

[^2]
The One-Time Pad ${ }^{\text {a }}$

1: Alice generates a random string r as long as x;
2: Alice sends r to Bob over a secret channel;
3: Alice sends $r \oplus x$ to Bob over a public channel;
4: Bob receives y;
5: Bob recovers $x:=y \oplus r$;

[^3]
Analysis

- The one-time pad uses $e=d=r$.
- This is said to be a private-key cryptosystem.
- Knowing x and knowing r are equivalent.
- Because r is random and private, the one-time pad achieves perfect secrecy (see also p. 566).
- The random bit string must be new for each round of communication.
- Cryptographically strong pseudorandom generators require exchanging only the seed once.
- The assumption of a private channel is problematic.

Public-Key Cryptography ${ }^{\text {a }}$

- Suppose only d is private to Bob, whereas e is public knowledge.
- Bob generates the (e, d) pair and publishes e.
- Anybody like Alice can send $E(e, x)$ to Bob.
- Knowing d, Bob can recover x by $D(d, E(e, x))=x$.
- The assumptions are complexity-theoretic.
- It is computationally difficult to compute d from e.
- It is computationally difficult to compute x from y without knowing d.

[^4]
Whitfield Diffie (1944-)

Martin Hellman (1945-)

Complexity Issues

- Given y and x, it is easy to verify whether $E(e, x)=y$.
- Hence one can always guess an x and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $\mathrm{P} \neq \mathrm{NP}$.
- But more is needed than $\mathrm{P} \neq \mathrm{NP}$.
- For instance, it is not sufficient that D is hard to compute in the worst case.
- It should be hard in "most" or "average" cases.

One-Way Functions

A function f is a one-way function if the following hold. ${ }^{\text {a }}$

1. f is one-to-one.
2. For all $x \in \Sigma^{*},|x|^{1 / k} \leq|f(x)| \leq|x|^{k}$ for some $k>0$.

- f is said to be honest.

3. f can be computed in polynomial time.
4. f^{-1} cannot be computed in polynomial time.

- Exhaustive search works, but it is too slow.
${ }^{\text {a Diffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann }}$ and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe (1985); Young (1983).

Existence of One-Way Functions

- Even if $\mathrm{P} \neq \mathrm{NP}$, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
- Is breaking glass a one-way function?

Candidates of One-Way Functions

- Modular exponentiation $f(x)=g^{x} \bmod p$, where g is a primitive root of p.
- Discrete logarithm is hard. ${ }^{a}$
- The RSA ${ }^{\text {b }}$ function $f(x)=x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- Breaking the RSA function is hard.
${ }^{\text {a }}$ Conjectured to be $2^{n^{\epsilon}}$ for some $\epsilon>0$ in both the worst-case sense and average sense. It is in NP in some sense (Grollmann and Selman (1988)).
${ }^{\mathrm{b}}$ Rivest, Shamir, and Adleman (1978).

Candidates of One-Way Functions (concluded)

- Modular squaring $f(x)=x^{2} \bmod p q$.
- Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard - the quadratic residuacity assumption (QRA). ${ }^{\text {a }}$

[^5]
The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- By Lemma 54 (p. 405),

$$
\begin{equation*}
\phi(p q)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=p q-p-q+1 \tag{8}
\end{equation*}
$$

- As $\operatorname{gcd}(e, \phi(p q))=1$, there is a d such that

$$
e d \equiv 1 \bmod \phi(p q)
$$

which can be found by the Euclidean algorithm.

Adi Shamir, Ron Rivest, and Leonard Adleman

Ron Rivest (1947-)

Adi Shamir (1952-)

Leonard Adleman (1945-)

A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes $p q$ and the encryption key e, a number relatively prime to $\phi(p q)$.
- The encryption function is $y=x^{e} \bmod p q$.
- Bob calculates $\phi(p q)$ by Eq. (8) (p. 577).
- Bob then calculates d such that $e d=1+k \phi(p q)$ for some $k \in \mathbb{Z}$.
- The decryption function is $y^{d} \bmod p q$.
- It works because $y^{d}=x^{e d}=x^{1+k \phi(p q)}=x \bmod p q$ by the Fermat-Euler theorem when $\operatorname{gcd}(x, p q)=1$ (p. 413).

The "Security" of the RSA Function

- Factoring $p q$ or calculating d from ($e, p q$) seems hard.
- See also p. 409.
- Breaking the last bit of RSA is as hard as breaking the RSA. ${ }^{\text {a }}$
- Recommended RSA key sizes: ${ }^{\text {b }}$
- 1024 bits up to 2010.
- 2048 bits up to 2030.
- 3072 bits up to 2031 and beyond.

[^6]
The "Security" of the RSA Function (concluded)

- Recall that problem A is "harder than" problem B if solving A results in solving B.
- Factorization is "harder than" breaking the RSA.
- Calculating Euler's phi function is "harder than" breaking the RSA.
- Factorization is "harder than" calculating Euler's phi function (see Lemma 54 on p. 405).
- So factorization is hardest, followed by calculating Euler's phi function, followed by breaking the RSA.
- Factorization cannot be NP-hard unless NP = coNP. ${ }^{\text {a }}$
- So breaking the RSA is unlikely to imply $\mathrm{P}=\mathrm{NP}$.
${ }^{\text {a }}$ Brassard (1979).

[^0]: ${ }^{\text {a }}$ Quine (1948), "To be is to be the value of a bound variable."

[^1]: aBoth "zero" and "cipher" come from the same Arab word.

[^2]: ${ }^{\text {a }}$ Shannon (1949).

[^3]: ${ }^{\text {a }}$ Mauborgne and Vernam (1917); Shannon (1949). It was allegedly used for the hotline between Russia and U.S.

[^4]: ${ }^{\text {a }}$ Diffie and Hellman (1976).

[^5]: ${ }^{\text {a }}$ Due to Gauss.

[^6]: ${ }^{\text {a }}$ Alexi, Chor, Goldreich, and Schnorr (1988).
 ${ }^{\mathrm{b}}$ RSA (2003).

