Theory of Computation

Homework 3 Due: 9:10, 2009/11/24

Problem 1. Prove that if $coNP \neq NP$, then $P \neq NP$.

Proof. If P = NP, then coP = coNP; hence coNP = coP = P = NP. So $coNP \neq NP$ implies $P \neq NP$.

Problem 2. It is known that the 3-COLORING problem is NP-complete. Use this fact to prove that for any given k > 3, it is NP-hard to ask if a graph can be colored by k or fewer colors such that no adjacent nodes have the same color.

Proof. We show a reduction from 3-COLORING to k-COLORING, i.e., the problem of asking if a graph can be colored by k or fewer colors such that no adjacent nodes have the same color. Given a graph G(V, E), the reduction outputs a graph G'(V', E') by adding k − 3 new nodes and all edges with any of them as an endpoint. That is, $V' = V \cup \{x_1, ..., x_{k-3}\}$ and $E' = E \cup \{(x_i, v) | v \in V', 1 \le i \le k - 3\}$, where $x_i \notin V$ for $1 \le i \le k - 3$. If $G \in 3$ -COLORING, then $G' \in k$ -COLORING because 3 or fewer colors for the nodes in V and additional k - 3 colors for those in $\{x_1, ..., x_{k-3}\}$ are needed so that no adjacent nodes have the same color. Conversely, consider a coloring of G' with k or fewer colors such that no adjacent nodes have the same color. In such a coloring, $x_1, ..., x_{k-3}$ use up exactly k - 3 colors, leaving at most 3 colors for the nodes in V. ■