Theory of Computation

Homework 3

Due: 9:10, 2009/11/24

Problem 1. Prove that if coNP $\neq N P$, then $P \neq N P$.

Proof. If $\mathrm{P}=\mathrm{NP}$, then coP $=$ coNP; hence

$$
\operatorname{coNP}=\operatorname{coP}=\mathrm{P}=\mathrm{NP} .
$$

So coNP \neq NP implies $P \neq N P$.

Problem 2. It is known that the 3-COLORING problem is NP-complete. Use this fact to prove that for any given $\mathrm{k}>3$, it is NP-hard to ask if a graph can be colored by k or fewer colors such that no adjacent nodes have the same color.

Proof. We show a reduction from 3-COLORING to k-COLORING, i.e., the problem of asking if a graph can be colored by k or fewer colors such that no adjacent nodes have the same color. Given a graph $G(V, E)$, the reduction outputs a graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ by adding $\mathrm{k}-3$ new nodes and all edges with any of them as an endpoint. That is, $\mathrm{V}^{\prime}=\mathrm{VU}\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}-3}\right\}$ and $\mathrm{E}^{\prime}=\mathrm{E} \cup\left\{\left(x_{i}, v\right) \mid v \in V^{\prime}, 1 \leq i \leq k-3\right\}$, where $\mathrm{x}_{\mathrm{i}} \notin \mathrm{V}$ for $1 \leq \mathrm{i} \leq \mathrm{k}-3$. If $\mathrm{G} \in 3$-COLORING, then $\mathrm{G}^{\prime} \in \mathrm{k}$-COLORING because 3 or fewer colors for the nodes in V and additional $\mathrm{k}-3$ colors for those in $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}-3}\right\}$ are needed so that no adjacent nodes have the same color. Conversely, consider a coloring of G^{\prime} with k or fewer colors such that no adjacent nodes have the same color. In such a coloring, $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}-3}$ use up exactly $\mathrm{k}-3$ colors, leaving at most 3 colors for the nodes in V.

