Monte Carlo Algorithms ${ }^{\text {a }}$

- The randomized bipartite perfect matching algorithm is called a Monte Carlo algorithm in the sense that
- If the algorithm finds that a matching exists, it is always correct (no false positives).
- If the algorithm answers in the negative, then it may make an error (false negative).

[^0]
Monte Carlo Algorithms (concluded)

- The algorithm makes a false negative with probability ≤ 0.5.
- Note this probability refers to prob[algorithm answers "no" $\mid G$ has a perfect matching] not $\operatorname{prob}[G$ has a perfect matching|algorithm answers "no"].
- This probability is not over the space of all graphs or determinants, but over the algorithm's own coin flips.
- It holds for any bipartite graph.

False Positives and False Negatives in Human Behavior? ${ }^{\text {a }}$

- "[Men] tend to misinterpret innocent friendliness as a sign that women are [...] interested in them."
- A false positive.
- "[Women] tend to undervalue signs that a man is interested in a committed relationship."
- A false negative.

[^1]
The Markov Inequality ${ }^{\text {a }}$

Lemma 64 Let x be a random variable taking nonnegative integer values. Then for any $k>0$,

$$
\operatorname{prob}[x \geq k E[x]] \leq 1 / k
$$

- Let p_{i} denote the probability that $x=i$.

$$
\begin{aligned}
E[x] & =\sum_{i} i p_{i} \\
& =\sum_{i<k E[x]} i p_{i}+\sum_{i \geq k E[x]} i p_{i} \\
& \geq k E[x] \times \operatorname{prob}[x \geq k E[x]] .
\end{aligned}
$$

[^2]
Andrei Andreyevich Markov (1856-1922)

An Application of Markov's Inequality

- Algorithm C runs in expected time $T(n)$ and always gives the right answer.
- Consider an algorithm that runs C for time $k T(n)$ and rejects the input if C does not stop within the time bound.
- By Markov's inequality, this new algorithm runs in time $k T(n)$ and gives the wrong answer with probability $\leq 1 / k$.
- By running this algorithm m times, we reduce the error probability to $\leq k^{-m}$.

An Application of Markov's Inequality (concluded)

- Suppose, instead, we run the algorithm for the same running time $m k T(n)$ once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1 /(m k)$.
- This is a far cry from the previous algorithm's error probability of $\leq k^{-m}$.

FSAT for k-SAT Formulas (p. 427)

- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a k-sAT formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

1: Start with an arbitrary truth assignment T;
2: for $i=1,2, \ldots, r$ do
3: \quad if $T \models \phi$ then
4: return " ϕ is satisfiable with T ";
5: else
6: \quad Let c be an unsatisfiable clause in ϕ under $T ;$ All
of its literals are false under T.\}
7: \quad Pick any x of these literals at random;
8: \quad Modify T to make x true;
9: end if
10: end for
11: return " ϕ is unsatisfiable";

3sAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3sat.
- In fact, it runs in expected $O\left((1.333 \cdots+\epsilon)^{n}\right)$ time with $r=3 n,{ }^{\text {a }}$ much better than $O\left(2^{n}\right) .{ }^{\text {b }}$
- We will show immediately that it works well for 2sat.
- The state of the art as of 2006 is expected $O\left(1.322^{n}\right)$ time for 3 sat and expected $O\left(1.474^{n}\right)$ time for 4 SAT. ${ }^{\text {c }}$

[^3]
Random Walk Works for $2 \mathrm{SAT}^{\text {a }}$

Theorem 65 Suppose the random walk algorithm with $r=2 n^{2}$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5 .

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Let $t(i)$ denote the expected number of repetitions of the flipping step until a satisfying truth assignment is found if our starting T differs from \hat{T} in i values.
- Their Hamming distance is i.
- Recall T is arbitrary.

[^4]
The Proof

- It can be shown that $t(i)$ is finite.
- $t(0)=0$ because it means that $T=\hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or T is not equal to any other satisfying truth assignment, then we need to flip at least once.
- We flip to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.
- So we have at least 0.5 chance of moving closer to \hat{T}.

The Proof (continued)

- Thus

$$
t(i) \leq \frac{t(i-1)+t(i+1)}{2}+1
$$

for $0<i<n$.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$
t(n) \leq t(n-1)+1
$$

because at $i=n$, we can only decrease i.

The Proof (continued)

- As we are only interested in upper bounds, we solve

$$
\begin{aligned}
x(0) & =0 \\
x(n) & =x(n-1)+1 \\
x(i) & =\frac{x(i-1)+x(i+1)}{2}+1, \quad 0<i<n
\end{aligned}
$$

- This is one-dimensional random walk with a reflecting and an absorbing barrier.

The Proof (continued)

- Add the equations up to obtain

$$
\begin{aligned}
& x(1)+x(2)+\cdots+x(n) \\
= & \frac{x(0)+x(1)+2 x(2)+\cdots+2 x(n-2)+x(n-1)+x(n)}{2} \\
& +n+x(n-1) .
\end{aligned}
$$

- Simplify to yield

$$
\frac{x(1)+x(n)-x(n-1)}{2}=n \text {. }
$$

- As $x(n)-x(n-1)=1$, we have

$$
x(1)=2 n-1
$$

The Proof (continued)

- Iteratively, we obtain

$$
\begin{aligned}
x(2) & =4 n-4 \\
& \vdots \\
x(i) & =2 i n-i^{2} .
\end{aligned}
$$

- The worst case happens when $i=n$, in which case

$$
x(n)=n^{2} .
$$

The Proof (concluded)

- We therefore reach the conclusion that

$$
t(i) \leq x(i) \leq x(n)=n^{2}
$$

- So the expected number of steps is at most n^{2}.
- The algorithm picks a running time $2 n^{2}$.
- This amounts to invoking the Markov inequality (p. 462) with $k=2$, with the consequence of having a probability of 0.5 .
- The proof does not yield a polynomial bound for 3sAT. ${ }^{\text {a }}$ ${ }^{\text {a }}$ Contributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Boosting the Performance

- We can pick $r=2 m n^{2}$ to have an error probability of $\leq(2 m)^{-1}$ by Markov's inequality.
- Alternatively, with the same running time, we can run the " $r=2 n^{2}$ " algorithm m times.
- But the error probability is reduced to $\leq 2^{-m}$!

Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k=2,3, \ldots, \sqrt{N}$.
- But it runs in $\Omega\left(2^{n / 2}\right)$ steps, where $n=|N|=\log _{2} N$.

The Density Attack for PRIMES

1: Pick $k \in\{2, \ldots, N-1\}$ randomly; $\{$ Assume $N>2$.
2: if $k \mid N$ then
3: return " N is composite";
4: else
5: return " N is a prime";
6: end if

Analysis ${ }^{\text {a }}$

- Suppose $N=P Q$, a product of 2 primes.
- The probability of success is

$$
<1-\frac{\phi(N)}{N}=1-\frac{(P-1)(Q-1)}{P Q}=\frac{P+Q-1}{P Q} .
$$

- In the case where $P \approx Q$, this probability becomes

$$
<\frac{1}{P}+\frac{1}{Q} \approx \frac{2}{\sqrt{N}} .
$$

- This probability is exponentially small.

[^5]
The Fermat Test for Primality

Fermat's "little" theorem on p. 411 suggests the following primality test for any given number p :
1: Pick a number a randomly from $\{1,2, \ldots, N-1\}$;
2: if $a^{N-1} \neq 1 \bmod N$ then
3: return " N is composite";
4: else
5: return " N is a prime";
6: end if

The Fermat Test for Primality (concluded)

- Unfortunately, there are composite numbers called Carmichael numbers that will pass the Fermat test for all $a \in\{1,2, \ldots, N-1\}$. ${ }^{\text {a }}$
- There are infinitely many Carmichael numbers. ${ }^{\text {b }}$
- In fact, the number of Carmichael numbers less than n exceeds $n^{2 / 7}$ for n large enough.
${ }^{\text {a }}$ Carmichael (1910).
${ }^{\mathrm{b}}$ Alford, Granville, and Pomerance (1992).

Square Roots Modulo a Prime

- Equation $x^{2}=a \bmod p$ has at most two (distinct) roots by Lemma 59 (p. 416).
- The roots are called square roots.
- Numbers a with square roots and $\operatorname{gcd}(a, p)=1$ are called quadratic residues.
* They are $1^{2} \bmod p, 2^{2} \bmod p, \ldots,(p-1)^{2} \bmod p$.
- We shall show that a number either has two roots or has none, and testing which one is true is trivial.
- There are no known efficient deterministic algorithms to find the roots, however.

Euler's Test

Lemma 66 (Euler) Let p be an odd prime and $a \neq 0 \bmod p$.

1. If $a^{(p-1) / 2}=1 \bmod p$, then $x^{2}=a \bmod p$ has two roots.
2. If $a^{(p-1) / 2} \neq 1 \bmod p$, then $a^{(p-1) / 2}=-1 \bmod p$ and $x^{2}=a \bmod p$ has no roots .

- Let r be a primitive root of p.
- By Fermat's "little" theorem, $r^{(p-1) / 2}$ is a square root of 1 , so $r^{(p-1) / 2}=1 \bmod p$ or $r^{(p-1) / 2}=-1 \bmod p$.
- But as r is a primitive root, $r^{(p-1) / 2} \neq 1 \bmod p$.
- Hence $r^{(p-1) / 2}=-1 \bmod p$.

The Proof (continued)

- Let $a=r^{k} \bmod p$ for some k.
- Then

$$
1=a^{(p-1) / 2}=r^{k(p-1) / 2}=\left[r^{(p-1) / 2}\right]^{k}=(-1)^{k} \bmod p
$$

- So k must be even.
- Suppose $a=r^{2 j}$ for some $1 \leq j \leq(p-1) / 2$.
- Then $a^{(p-1) / 2}=r^{j(p-1)}=1 \bmod p$ and its two distinct roots are $r^{j},-r^{j}\left(=r^{j+(p-1) / 2} \bmod p\right)$.
- If $r^{j}=-r^{j} \bmod p$, then $2 r^{j}=0 \bmod p$, which implies $r^{j}=0 \bmod p$, a contradiction.

The Proof (continued)

- As $1 \leq j \leq(p-1) / 2$, there are $(p-1) / 2$ such a 's.
- Each such a has 2 distinct square roots.
- The square roots of all the a 's are distinct.
- The square roots of different a 's must be different.
- Hence the set of square roots is $\{1,2, \ldots, p-1\}$.
- Because there are $(p-1) / 2$ such a 's and each a has two square roots.
- As a result, $a=r^{2 j}, 1 \leq j \leq(p-1) / 2$, exhaust all the quadratic residues.

The Proof (concluded)

- If $a=r^{2 j+1}$, then it has no roots because all the square roots have been taken.
- Now,

$$
a^{(p-1) / 2}=\left[r^{(p-1) / 2}\right]^{2 j+1}=(-1)^{2 j+1}=-1 \bmod p
$$

The Legendre Symbol ${ }^{\text {a }}$ and Quadratic Residuacity Test

- By Lemma 66 (p. 483) $a^{(p-1) / 2} \bmod p= \pm 1$ for $a \neq 0 \bmod p$.
- For odd prime p, define the Legendre symbol $(a \mid p)$ as
$(a \mid p)= \begin{cases}0 & \text { if } p \mid a, \\ 1 & \text { if } a \text { is a quadratic residue modulo } p, \\ -1 & \text { if } a \text { is a quadratic nonresidue modulo } p .\end{cases}$
- Euler's test implies $a^{(p-1) / 2}=(a \mid p) \bmod p$ for any odd prime p and any integer a.
- Note that $(a b \mid p)=(a \mid p)(b \mid p)$.

[^6]
Gauss's Lemma

Lemma 67 (Gauss) Let p and q be two odd primes. Then $(q \mid p)=(-1)^{m}$, where m is the number of residues in $R=\{i q \bmod p: 1 \leq i \leq(p-1) / 2\}$ that are greater than $(p-1) / 2$.

- All residues in R are distinct.
- If $i q=j q \bmod p$, then $p \mid(j-i) q$ or $p \mid q$.
- No two elements of R add up to p.
- If $i q+j q=0 \bmod p$, then $p \mid(i+j)$ or $p \mid q$.
- But neither is possible.

The Proof (continued)

- Consider the set R^{\prime} of residues that result from R if we replace each of the m elements $a \in R$ such that $a>(p-1) / 2$ by $p-a$.
- This is equivalent to performing $-a \bmod p$.
- All residues in R^{\prime} are now at most $(p-1) / 2$.
- In fact, $R^{\prime}=\{1,2, \ldots,(p-1) / 2\}$ (see illustration next page).
- Otherwise, two elements of R would add up to p, which has been shown to be impossible.

$$
p=7 \text { and } q=5
$$

The Proof (concluded)

- Alternatively, $R^{\prime}=\{ \pm i q \bmod p: 1 \leq i \leq(p-1) / 2\}$, where exactly m of the elements have the minus sign.
- Take the product of all elements in the two representations of R^{\prime}.
- So $[(p-1) / 2]$! $=(-1)^{m} q^{(p-1) / 2}[(p-1) / 2]$! $\bmod p$.
- Because $\operatorname{gcd}([(p-1) / 2]!, p)=1$, the above implies

$$
1=(-1)^{m} q^{(p-1) / 2} \bmod p .
$$

Legendre's Law of Quadratic Reciprocity ${ }^{\text {a }}$

- Let p and q be two odd primes.
- The next result says their Legendre symbols are distinct if and only if both numbers are $3 \bmod 4$.

Lemma 68 (Legendre (1785), Gauss)

$$
(p \mid q)(q \mid p)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}} .
$$

[^7]
The Proof (continued)

- Sum the elements of R^{\prime} in the previous proof in $\bmod 2$.
- On one hand, this is just $\sum_{i=1}^{(p-1) / 2} i \bmod 2$.
- On the other hand, the sum equals

$$
\begin{aligned}
& \sum_{i=1}^{(p-1) / 2}\left(q i-p\left\lfloor\frac{i q}{p}\right\rfloor\right)+m p \bmod 2 \\
= & \left(q \sum_{i=1}^{(p-1) / 2} i-p \sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor\right)+m p \bmod 2 .
\end{aligned}
$$

- Signs are irrelevant under mod2.
- m is as in Lemma 67 (p. 488).

The Proof (continued)

- Ignore odd multipliers to make the sum equal

$$
\left(\sum_{i=1}^{(p-1) / 2} i-\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor\right)+m \bmod 2 .
$$

- Equate the above with $\sum_{i=1}^{(p-1) / 2} i \bmod 2$ to obtain

$$
m=\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor \bmod 2
$$

The Proof (concluded)

- $\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor$ is the number of integral points under the line $y=(q / p) x$ for $1 \leq x \leq(p-1) / 2$.
- Gauss's lemma (p. 488) says $(q \mid p)=(-1)^{m}$.
- Repeat the proof with p and q reversed.
- So $(p \mid q)=(-1)^{m^{\prime}}$, where m^{\prime} is the number of integral points above the line $y=(q / p) x$ for $1 \leq y \leq(q-1) / 2$.
- As a result, $(p \mid q)(q \mid p)=(-1)^{m+m^{\prime}}$.
- But $m+m^{\prime}$ is the total number of integral points in the $\frac{p-1}{2} \times \frac{q-1}{2}$ rectangle, which is $\frac{p-1}{2} \frac{q-1}{2}$.

Eisenstein's Rectangle

$$
p=11 \text { and } q=7
$$

The Jacobi Symbol ${ }^{\text {a }}$

- The Legendre symbol only works for odd prime moduli.
- The Jacobi symbol $(a \mid m)$ extends it to cases where m is not prime.
- Let $m=p_{1} p_{2} \cdots p_{k}$ be the prime factorization of m.
- When $m>1$ is odd and $\operatorname{gcd}(a, m)=1$, then

$$
(a \mid m)=\prod_{i=1}^{k}\left(a \mid p_{i}\right)
$$

- Note that the Jacobi symbol equals ± 1.
- It reduces to the Legendre symbol when m is a prime.
- Define $(a \mid 1)=1$.
${ }^{\text {a }}$ Carl Jacobi (1804-1851).

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for arguments for which it is defined.

1. $(a b \mid m)=(a \mid m)(b \mid m)$.
2. $\left(a \mid m_{1} m_{2}\right)=\left(a \mid m_{1}\right)\left(a \mid m_{2}\right)$.
3. If $a=b \bmod m$, then $(a \mid m)=(b \mid m)$.
4. $(-1 \mid m)=(-1)^{(m-1) / 2}$ (by Lemma 67 on p. 488).
5. $(2 \mid m)=(-1)^{\left(m^{2}-1\right) / 8}$. ${ }^{\text {a }}$
6. If a and m are both odd, then

$$
(a \mid m)(m \mid a)=(-1)^{(a-1)(m-1) / 4}
$$

[^8]
Calculation of (2200|999)

Similar to the Euclidean algorithm and does not require factorization.

$$
\begin{aligned}
& (202 \mid 999)=(-1)^{\left(999^{2}-1\right) / 8}(101 \mid 999) \\
= & (-1)^{124750}(101 \mid 999)=(101 \mid 999) \\
= & (-1)^{(100)(998) / 4}(999 \mid 101)=(-1)^{24950}(999 \mid 101) \\
= & (999 \mid 101)=(90 \mid 101)=(-1)^{\left(101^{2}-1\right) / 8}(45 \mid 101) \\
= & (-1)^{1275}(45 \mid 101)=-(45 \mid 101) \\
= & -(-1)^{(44)(100) / 4}(101 \mid 45)=-(101 \mid 45)=-(11 \mid 45) \\
= & -(-1)^{(10)(44) / 4}(45 \mid 11)=-(45 \mid 11) \\
= & -(1 \mid 11)=-1 .
\end{aligned}
$$

A Result Generalizing Proposition 10.3 in the Textbook

Theorem 69 The group of set $\Phi(n)$ under multiplication $\bmod n$ has a primitive root if and only if n is either 1, 2, 4, p^{k}, or $2 p^{k}$ for some nonnegative integer k and and odd prime p.

This result is essential in the proof of the next lemma.

The Jacobi Symbol and Primality Test ${ }^{\text {a }}$

Lemma 70 If $(M \mid N)=M^{(N-1) / 2} \bmod N$ for all $M \in \Phi(N)$, then N is prime. (Assume N is odd.)

- Assume $N=m p$, where p is an odd prime, $\operatorname{gcd}(m, p)=1$, and $m>1$ (not necessarily prime).
- Let $r \in \Phi(p)$ such that $(r \mid p)=-1$.
- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$
\begin{aligned}
M & =r \bmod p \\
M & =1 \bmod m
\end{aligned}
$$

[^9]
The Proof (continued)

- By the hypothesis,

$$
M^{(N-1) / 2}=(M \mid N)=(M \mid p)(M \mid m)=-1 \bmod N .
$$

- Hence

$$
M^{(N-1) / 2}=-1 \bmod m .
$$

- But because $M=1 \bmod m$,

$$
M^{(N-1) / 2}=1 \bmod m,
$$

a contradiction.

The Proof (continued)

- Second, assume that $N=p^{a}$, where p is an odd prime and $a \geq 2$.
- By Theorem 69 (p. 500), there exists a primitive root r modulo p^{a}.
- From the assumption,

$$
M^{N-1}=\left[M^{(N-1) / 2}\right]^{2}=(M \mid N)^{2}=1 \bmod N
$$

for all $M \in \Phi(N)$.

The Proof (continued)

- As $r \in \Phi(N)$ (prove it), we have

$$
r^{N-1}=1 \bmod N .
$$

- As r 's exponent modulo $N=p^{a}$ is $\phi(N)=p^{a-1}(p-1)$,

$$
p^{a-1}(p-1) \mid N-1,
$$

which implies that $p \mid N-1$.

- But this is impossible given that $p \mid N$.

The Proof (continued)

- Third, assume that $N=m p^{a}$, where p is an odd prime, $\operatorname{gcd}(m, p)=1, m>1$ (not necessarily prime), and a is even.
- The proof mimics that of the second case.
- By Theorem 69 (p. 500), there exists a primitive root r modulo p^{a}.
- From the assumption,

$$
M^{N-1}=\left[M^{(N-1) / 2}\right]^{2}=(M \mid N)^{2}=1 \bmod N
$$

for all $M \in \Phi(N)$.

The Proof (continued)

- In particular,

$$
\begin{equation*}
M^{N-1}=1 \bmod p^{a} \tag{7}
\end{equation*}
$$

for all $M \in \Phi(N)$.

- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$
\begin{aligned}
M & =r \bmod p^{a}, \\
M & =1 \bmod m .
\end{aligned}
$$

- Because $M=r \bmod p^{a}$ and Eq. (7),

$$
r^{N-1}=1 \bmod p^{a} .
$$

The Proof (concluded)

- As r 's exponent modulo $N=p^{a}$ is $\phi(N)=p^{a-1}(p-1)$,

$$
p^{a-1}(p-1) \mid N-1,
$$

which implies that $p \mid N-1$.

- But this is impossible given that $p \mid N$.

[^0]: ${ }^{a}$ Metropolis and Ulam (1949).

[^1]: a "Don't misunderestimate yourself." The Economist, 2006.

[^2]: a Andrei Andreyevich Markov (1856-1922).

[^3]: ${ }^{a}$ Use this setting per run of the algorithm.
 bschöning (1999).
 ${ }^{\text {c }}$ Kwama and Tamaki (2004); Rolf (2006).

[^4]: ${ }^{\text {a Papadimitriou (1991). }}$

[^5]: ${ }^{\text {a }}$ See also p. 409.

[^6]: ${ }^{\text {a }}$ Andrien-Marie Legendre (1752-1833).

[^7]: ${ }^{\text {a }}$ First stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19 . He gave at least 6 different proofs during his life. The 152nd proof appeared in 1963.

[^8]: ${ }^{\text {a }}$ By Lemma 67 (p. 488) and some parity arguments.

[^9]: ${ }^{\text {a }}$ Mr. Clement Hsiao (R88526067) pointed out that the textbook's proof for Lemma 11.8 is incorrect while he was a senior in January 1999.

