Monte Carlo Algorithms $^{\rm a}$

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no false positives).
 - If the algorithm answers in the negative, then it may make an error (false negative).

^aMetropolis and Ulam (1949).

Monte Carlo Algorithms (concluded)

• The algorithm makes a false negative with probability ≤ 0.5 .

- Note this probability refers to

prob[algorithm answers "no" |G has a perfect matching] not

 $\operatorname{prob}[G \text{ has a perfect matching} | \operatorname{algorithm answers "no"}].$

• This probability is *not* over the space of all graphs or determinants, but *over* the algorithm's own coin flips.

- It holds for any bipartite graph.

False Positives and False Negatives in Human Behavior?^a

 "[Men] tend to misinterpret innocent friendliness as a sign that women are [···] interested in them."

– A false positive.

• "[Women] tend to undervalue signs that a man is interested in a committed relationship."

– A false negative.

^a "Don't misunderestimate yourself." The Economist, 2006.

The Markov Inequality^a

Lemma 64 Let x be a random variable taking nonnegative integer values. Then for any k > 0,

 $\operatorname{prob}[x \ge kE[x]] \le 1/k.$

• Let p_i denote the probability that x = i.

$$E[x] = \sum_{i} ip_{i}$$

=
$$\sum_{i < kE[x]} ip_{i} + \sum_{i \ge kE[x]} ip_{i}$$

$$\ge kE[x] \times \operatorname{prob}[x \ge kE[x]]$$

^aAndrei Andreyevich Markov (1856–1922).

Andrei Andreyevich Markov (1856–1922)

An Application of Markov's Inequality

- Algorithm C runs in expected time T(n) and always gives the right answer.
- Consider an algorithm that runs C for time kT(n) and rejects the input if C does not stop within the time bound.
- By Markov's inequality, this new algorithm runs in time kT(n) and gives the wrong answer with probability ≤ 1/k.
- By running this algorithm m times, we reduce the error probability to $\leq k^{-m}$.

An Application of Markov's Inequality (concluded)

- Suppose, instead, we run the algorithm for the same running time mkT(n) once and rejects the input if it does not stop within the time bound.
- By Markov's inequality, this new algorithm gives the wrong answer with probability $\leq 1/(mk)$.
- This is a far cry from the previous algorithm's error probability of $\leq k^{-m}$.

FSAT for k-SAT Formulas (p. 427)

- Let $\phi(x_1, x_2, \dots, x_n)$ be a k-SAT formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

1: Start with an *arbitrary* truth assignment T;

2: for
$$i = 1, 2, ..., r$$
 do

- 3: **if** $T \models \phi$ **then**
- 4: **return** " ϕ is satisfiable with T";
- 5: **else**
- 6: Let c be an unsatisfiable clause in ϕ under T; {All of its literals are false under T.}
- 7: Pick any x of these literals *at random*;
- 8: Modify T to make x true;

```
9: end if
```

```
10: end for
```

```
11: return "\phi is unsatisfiable";
```

3SAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it.
- The random walk algorithm needs expected exponential time for 3SAT.
 - In fact, it runs in expected $O((1.333\cdots + \epsilon)^n)$ time with r = 3n,^a much better than $O(2^n)$.^b
- We will show immediately that it works well for 2SAT.
- The state of the art as of 2006 is expected $O(1.322^n)$ time for 3SAT and expected $O(1.474^n)$ time for 4SAT.^c

^aUse this setting per run of the algorithm. ^bSchöning (1999). ^cKwama and Tamaki (2004); Rolf (2006).

Random Walk Works for $2\mathrm{SAT}^\mathrm{a}$

Theorem 65 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Let t(i) denote the expected number of repetitions of the flipping step until a satisfying truth assignment is found if our starting T differs from \hat{T} in *i* values.
 - Their Hamming distance is i.
 - Recall T is arbitrary.

^aPapadimitriou (1991).

The Proof

- It can be shown that t(i) is finite.
- t(0) = 0 because it means that $T = \hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or T is not equal to any other satisfying truth assignment, then we need to flip at least once.
- We flip to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.
- So we have at least 0.5 chance of moving closer to \hat{T} .

• Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

for 0 < i < n.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

• As we are only interested in upper bounds, we solve

$$\begin{aligned} x(0) &= 0 \\ x(n) &= x(n-1) + 1 \\ x(i) &= \frac{x(i-1) + x(i+1)}{2} + 1, \quad 0 < i < n \end{aligned}$$

• This is one-dimensional random walk with a reflecting and an absorbing barrier.

• Add the equations up to obtain

$$= \frac{x(1) + x(2) + \dots + x(n)}{2}$$

$$= \frac{x(0) + x(1) + 2x(2) + \dots + 2x(n-2) + x(n-1) + x(n)}{2}$$

• Simplify to yield

$$\frac{x(1) + x(n) - x(n-1)}{2} = n.$$

• As x(n) - x(n-1) = 1, we have

$$x(1) = 2n - 1.$$

• Iteratively, we obtain

$$x(2) = 4n - 4,$$

$$\vdots$$

$$x(i) = 2in - i^2.$$

• The worst case happens when i = n, in which case

$$x(n) = n^2.$$

The Proof (concluded)

• We therefore reach the conclusion that

$$t(i) \le x(i) \le x(n) = n^2.$$

- So the expected number of steps is at most n^2 .
- The algorithm picks a running time $2n^2$.
- This amounts to invoking the Markov inequality (p. 462) with k = 2, with the consequence of having a probability of 0.5.
- The proof does not yield a polynomial bound for 3SAT.^a

 ^aContributed by Mr. Cheng-Yu Lee (
 (R95922035) on November 8, 2006.

Boosting the Performance

- We can pick $r = 2mn^2$ to have an error probability of $\leq (2m)^{-1}$ by Markov's inequality.
- Alternatively, with the same running time, we can run the " $r = 2n^2$ " algorithm m times.
- But the error probability is reduced to $\leq 2^{-m}!$

Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k = 2, 3, ..., \sqrt{N}$.
- But it runs in $\Omega(2^{n/2})$ steps, where $n = |N| = \log_2 N$.

The Density Attack for $\ensuremath{\operatorname{PRIMES}}$

- 1: Pick $k \in \{2, \ldots, N-1\}$ randomly; {Assume N > 2.}
- 2: if $k \mid N$ then
- 3: **return** "*N* is composite";

4: else

5: **return** "N is a prime";

6: **end if**

$\mathsf{Analysis}^{\mathrm{a}}$

- Suppose N = PQ, a product of 2 primes.
- The probability of success is

$$< 1 - \frac{\phi(N)}{N} = 1 - \frac{(P-1)(Q-1)}{PQ} = \frac{P+Q-1}{PQ}$$

• In the case where $P \approx Q$, this probability becomes

$$< \frac{1}{P} + \frac{1}{Q} \approx \frac{2}{\sqrt{N}}$$

• This probability is exponentially small.

^aSee also p. 409.

The Fermat Test for Primality

Fermat's "little" theorem on p. 411 suggests the following primality test for any given number p:

- 1: Pick a number a randomly from $\{1, 2, \ldots, N-1\};$
- 2: if $a^{N-1} \neq 1 \mod N$ then
- 3: return "N is composite";
- 4: **else**
- 5: return "N is a prime";
- 6: **end if**

The Fermat Test for Primality (concluded)

- Unfortunately, there are composite numbers called **Carmichael numbers** that will pass the Fermat test for all $a \in \{1, 2, ..., N-1\}$.^a
- There are infinitely many Carmichael numbers.^b
- In fact, the number of Carmichael numbers less than n exceeds $n^{2/7}$ for n large enough.

^aCarmichael (1910). ^bAlford, Granville, and Pomerance (1992).

Square Roots Modulo a Prime

- Equation $x^2 = a \mod p$ has at most two (distinct) roots by Lemma 59 (p. 416).
 - The roots are called **square roots**.
 - Numbers a with square roots and gcd(a, p) = 1 are called **quadratic residues**.
 - * They are $1^2 \mod p, 2^2 \mod p, \dots, (p-1)^2 \mod p$.
- We shall show that a number either has two roots or has none, and testing which one is true is trivial.
- There are no known efficient *deterministic* algorithms to find the roots, however.

Euler's Test

Lemma 66 (Euler) Let p be an odd prime and $a \neq 0 \mod p$.

- 1. If $a^{(p-1)/2} = 1 \mod p$, then $x^2 = a \mod p$ has two roots.
- 2. If $a^{(p-1)/2} \neq 1 \mod p$, then $a^{(p-1)/2} = -1 \mod p$ and $x^2 = a \mod p$ has no roots.
 - Let r be a primitive root of p.
 - By Fermat's "little" theorem, $r^{(p-1)/2}$ is a square root of 1, so $r^{(p-1)/2} = 1 \mod p$ or $r^{(p-1)/2} = -1 \mod p$.
- But as r is a primitive root, $r^{(p-1)/2} \neq 1 \mod p$.

• Hence
$$r^{(p-1)/2} = -1 \mod p$$
.

- Let $a = r^k \mod p$ for some k.
- Then

$$1 = a^{(p-1)/2} = r^{k(p-1)/2} = \left[r^{(p-1)/2} \right]^k = (-1)^k \mod p.$$

- So k must be even.
- Suppose $a = r^{2j}$ for some $1 \le j \le (p-1)/2$.
- Then $a^{(p-1)/2} = r^{j(p-1)} = 1 \mod p$ and its two distinct roots are $r^j, -r^j (= r^{j+(p-1)/2} \mod p)$.

- If
$$r^j = -r^j \mod p$$
, then $2r^j = 0 \mod p$, which implies $r^j = 0 \mod p$, a contradiction.

- As $1 \le j \le (p-1)/2$, there are (p-1)/2 such *a*'s.
- Each such a has 2 distinct square roots.
- The square roots of all the a's are distinct.
 - The square roots of different *a*'s must be different.
- Hence the set of square roots is $\{1, 2, \ldots, p-1\}$.
 - Because there are (p-1)/2 such a's and each a has two square roots.
- As a result, $a = r^{2j}$, $1 \le j \le (p-1)/2$, exhaust all the quadratic residues.

The Proof (concluded)

- If $a = r^{2j+1}$, then it has no roots because all the square roots have been taken.
- Now,

$$a^{(p-1)/2} = \left[r^{(p-1)/2}\right]^{2j+1} = (-1)^{2j+1} = -1 \mod p.$$

The Legendre Symbol $^{\rm a}$ and Quadratic Residuacity Test

- By Lemma 66 (p. 483) $a^{(p-1)/2} \mod p = \pm 1$ for $a \neq 0 \mod p$.
- For odd prime p, define the **Legendre symbol** $(a \mid p)$ as

$$(a \mid p) = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p. \end{cases}$$

- Euler's test implies $a^{(p-1)/2} = (a \mid p) \mod p$ for any odd prime p and any integer a.
- Note that (ab|p) = (a|p)(b|p).

^aAndrien-Marie Legendre (1752–1833).

Gauss's Lemma

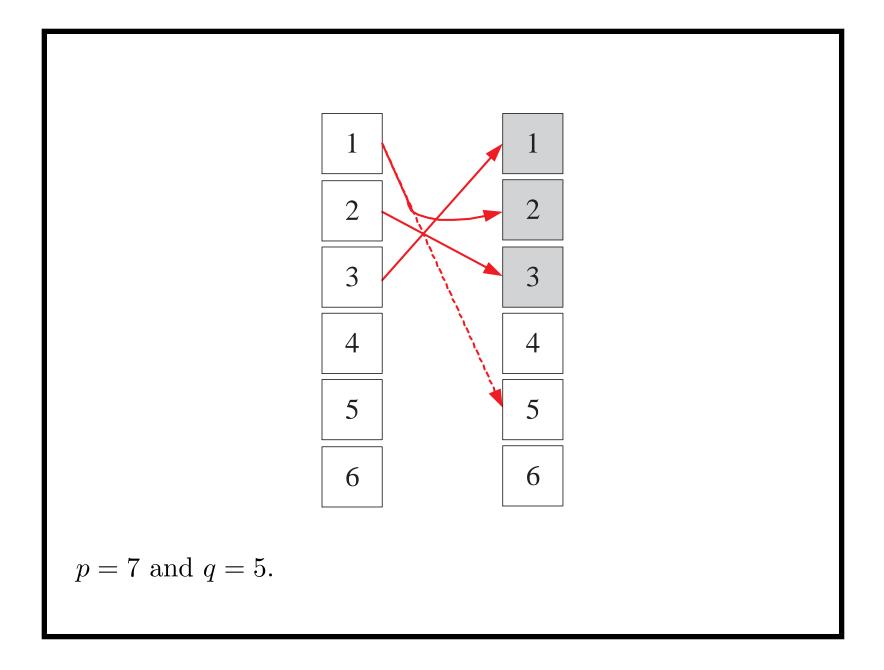
Lemma 67 (Gauss) Let p and q be two odd primes. Then $(q|p) = (-1)^m$, where m is the number of residues in $R = \{ iq \mod p : 1 \le i \le (p-1)/2 \}$ that are greater than (p-1)/2.

• All residues in R are distinct.

- If $iq = jq \mod p$, then p|(j-i)q or p|q.

- No two elements of R add up to p.
 - If $iq + jq = 0 \mod p$, then p|(i+j) or p|q.
 - But neither is possible.

- Consider the set R' of residues that result from R if we replace each of the m elements $a \in R$ such that a > (p-1)/2 by p-a.
 - This is equivalent to performing $-a \mod p$.
- All residues in R' are now at most (p-1)/2.
- In fact, $R' = \{1, 2, \dots, (p-1)/2\}$ (see illustration next page).
 - Otherwise, two elements of R would add up to p, which has been shown to be impossible.



The Proof (concluded)

- Alternatively, $R' = \{\pm iq \mod p : 1 \le i \le (p-1)/2\},\$ where exactly *m* of the elements have the minus sign.
- Take the product of all elements in the two representations of R'.
- So $[(p-1)/2]! = (-1)^m q^{(p-1)/2} [(p-1)/2]! \mod p.$
- Because gcd([(p-1)/2]!, p) = 1, the above implies

$$1 = (-1)^m q^{(p-1)/2} \bmod p.$$

Legendre's Law of Quadratic Reciprocity^a

- Let p and q be two odd primes.
- The next result says their Legendre symbols are distinct if and only if both numbers are 3 mod 4.

Lemma 68 (Legendre (1785), Gauss)

$$(p|q)(q|p) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

^aFirst stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 6 different proofs during his life. The 152nd proof appeared in 1963.

- Sum the elements of R' in the previous proof in mod 2.
- On one hand, this is just $\sum_{i=1}^{(p-1)/2} i \mod 2$.
- On the other hand, the sum equals

$$\sum_{i=1}^{(p-1)/2} \left(qi - p \left\lfloor \frac{iq}{p} \right\rfloor \right) + mp \mod 2$$
$$= \left(q \sum_{i=1}^{(p-1)/2} i - p \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) + mp \mod 2.$$

- Signs are irrelevant under mod2.

-m is as in Lemma 67 (p. 488).

• Ignore odd multipliers to make the sum equal

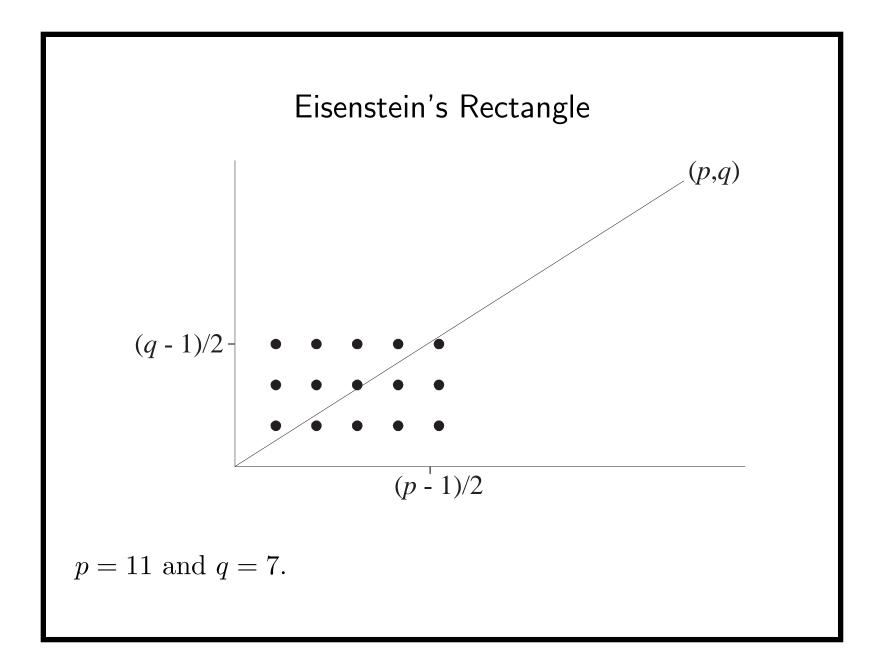
$$\left(\sum_{i=1}^{(p-1)/2} i - \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor\right) + m \mod 2.$$

• Equate the above with $\sum_{i=1}^{(p-1)/2} i \mod 2$ to obtain

$$m = \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \mod 2.$$

The Proof (concluded)

- $\sum_{i=1}^{(p-1)/2} \lfloor \frac{iq}{p} \rfloor$ is the number of integral points under the line y = (q/p) x for $1 \le x \le (p-1)/2$.
- Gauss's lemma (p. 488) says $(q|p) = (-1)^m$.
- Repeat the proof with p and q reversed.
- So $(p|q) = (-1)^{m'}$, where m' is the number of integral points above the line y = (q/p) x for $1 \le y \le (q-1)/2$.
- As a result, $(p|q)(q|p) = (-1)^{m+m'}$.
- But m + m' is the total number of integral points in the $\frac{p-1}{2} \times \frac{q-1}{2}$ rectangle, which is $\frac{p-1}{2} \frac{q-1}{2}$.



The Jacobi Symbol^a

- The Legendre symbol only works for odd *prime* moduli.
- The **Jacobi symbol** $(a \mid m)$ extends it to cases where m is not prime.
- Let $m = p_1 p_2 \cdots p_k$ be the prime factorization of m.
- When m > 1 is odd and gcd(a, m) = 1, then

$$(a|m) = \prod_{i=1}^{k} (a | p_i).$$

– Note that the Jacobi symbol equals ± 1 .

- It reduces to the Legendre symbol when m is a prime.

• Define $(a \mid 1) = 1$.

^aCarl Jacobi (1804–1851).

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for arguments for which it is defined.

1.
$$(ab | m) = (a | m)(b | m).$$

2.
$$(a \mid m_1 m_2) = (a \mid m_1)(a \mid m_2).$$

3. If
$$a = b \mod m$$
, then $(a \mid m) = (b \mid m)$.

4.
$$(-1 | m) = (-1)^{(m-1)/2}$$
 (by Lemma 67 on p. 488).

5.
$$(2 \mid m) = (-1)^{(m^2 - 1)/8}$$
.^a

6. If a and m are both odd, then

$$(a \mid m)(m \mid a) = (-1)^{(a-1)(m-1)/4}.$$

^aBy Lemma 67 (p. 488) and some parity arguments.

Calculation of (2200|999)

Similar to the Euclidean algorithm and does *not* require factorization.

$$(202|999) = (-1)^{(999^2 - 1)/8} (101|999)$$

= $(-1)^{124750} (101|999) = (101|999)$
= $(-1)^{(100)(998)/4} (999|101) = (-1)^{24950} (999|101)$
= $(999|101) = (90|101) = (-1)^{(101^2 - 1)/8} (45|101)$
= $(-1)^{1275} (45|101) = -(45|101)$
= $-(-1)^{(44)(100)/4} (101|45) = -(101|45) = -(11|45)$
= $-(-1)^{(10)(44)/4} (45|11) = -(45|11)$
= $-(1|11) = -1.$

A Result Generalizing Proposition 10.3 in the Textbook

Theorem 69 The group of set $\Phi(n)$ under multiplication mod n has a primitive root if and only if n is either 1, 2, 4, p^k , or $2p^k$ for some nonnegative integer k and and odd prime p.

This result is essential in the proof of the next lemma.

The Jacobi Symbol and Primality Test^a

Lemma 70 If $(M|N) = M^{(N-1)/2} \mod N$ for all $M \in \Phi(N)$, then N is prime. (Assume N is odd.)

- Assume N = mp, where p is an odd prime, gcd(m, p) = 1, and m > 1 (not necessarily prime).
- Let $r \in \Phi(p)$ such that (r | p) = -1.
- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

 $M = r \mod p,$ $M = 1 \mod m.$

^aMr. Clement Hsiao (R88526067) pointed out that the textbook's proof for Lemma 11.8 is incorrect while he was a senior in January 1999.

• By the hypothesis,

$$M^{(N-1)/2} = (M \mid N) = (M \mid p)(M \mid m) = -1 \mod N.$$

• Hence

$$M^{(N-1)/2} = -1 \mod m.$$

• But because $M = 1 \mod m$,

$$M^{(N-1)/2} = 1 \bmod m,$$

a contradiction.

- Second, assume that $N = p^a$, where p is an odd prime and $a \ge 2$.
- By Theorem 69 (p. 500), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

• As $r \in \Phi(N)$ (prove it), we have

 $r^{N-1} = 1 \bmod N.$

• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$, $p^{a-1}(p-1) \mid N-1$,

which implies that $p \mid N - 1$.

• But this is impossible given that $p \mid N$.

- Third, assume that $N = mp^a$, where p is an odd prime, gcd(m, p) = 1, m > 1 (not necessarily prime), and a is even.
- The proof mimics that of the second case.
- By Theorem 69 (p. 500), there exists a primitive root r modulo p^a .
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2}\right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.

• In particular,

$$M^{N-1} = 1 \bmod p^a \tag{7}$$

for all $M \in \Phi(N)$.

• The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

 $M = r \mod p^a,$ $M = 1 \mod m.$

• Because $M = r \mod p^a$ and Eq. (7),

$$r^{N-1} = 1 \bmod p^a.$$

The Proof (concluded)

• As r's exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p-1)$,

$$p^{a-1}(p-1) \,|\, N-1,$$

which implies that $p \mid N - 1$.

• But this is impossible given that $p \mid N$.