
Exponents and Primitive Roots

• From Fermat’s “little” theorem, all exponents divide
p− 1.

• A primitive root of p is thus a number with exponent
p− 1.

• Let R(k) denote the total number of residues in Φ(p)
that have exponent k.

• We already knew that R(k) = 0 for k 6 |(p− 1).

• So ∑

k|(p−1)

R(k) = p− 1

as every number has an exponent.
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Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies xk = 1 mod p.

• Hence there are at most k residues of exponent k, i.e.,
R(k) ≤ k, by Lemma 59 (p. 416).

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si = sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,
they comprise all solutions of xk = 1 mod p.
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Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Suppose ` < k and ` 6∈ Φ(k) with gcd(`, k) = d > 1.

• Then
(s`)k/d = (sk)`/d = 1 mod p.

• Therefore, s` has exponent at most k/d, which is less
than k.

• We conclude that

R(k) ≤ φ(k).
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Size of R(k) (concluded)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k|(p−1)

R(k) ≤
∑

k|(p−1)

φ(k) = p− 1

by Lemma 55 (p. 405).

• Hence

R(k) =





φ(k) when k|(p− 1)

0 otherwise

• In particular, R(p− 1) = φ(p− 1) > 0, and p has at least
one primitive root.

• This proves one direction of Theorem 51 (p. 393).
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A Few Calculations

• Let p = 13.

• From p. 413, we know φ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As Φ(p− 1) = {1, 5, 7, 11}, the primitive roots are
g1, g5, g7, g11 for any primitive root g.
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The Other Direction of Theorem 51 (p. 393)

• We must show p is a prime only if there is a number r

(called primitive root) such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q 6= 1 mod p for all prime divisors q of p− 1.

• Suppose p is not a prime.

• We proceed to show that no primitive roots exist.

• Suppose rp−1 = 1 mod p (note gcd(r, p) = 1).

• We will show that the 2nd condition must be violated.
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The Proof (continued)

• rφ(p) = 1 mod p by the Fermat-Euler theorem (p. 413).

• Because p is not a prime, φ(p) < p− 1.

• Let k be the smallest integer such that rk = 1 mod p.

– By condition 1, it is easy to show that k | (p− 1)
(p. 416).

• Note that k |φ(p) (p. 416).

• As k ≤ φ(p), k < p− 1.

• Let q be a prime divisor of (p− 1)/k > 1.

• Then k|(p− 1)/q.
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The Proof (concluded)

• Therefore, by virtue of the definition of k,

r(p−1)/q = 1 mod p.

• But this violates the 2nd condition.
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Function Problems

• Decision problems are yes/no problems (sat, tsp (d),
etc.).

• Function problems require a solution (a satisfying
truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision
problems?

• Which one is harder?
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Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the
corresponding decision problem.

– If you can find a satisfying truth assignment
efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the
corresponding function problems.
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fsat

• fsat is this function problem:

– Let φ(x1, x2, . . . , xn) be a boolean expression.

– If φ is satisfiable, then return a satisfying truth
assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a
polynomial-time algorithm.
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An Algorithm for fsat Using sat
1: t := ε;

2: if φ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if φ[ xi = true ] ∈ sat then

5: t := t ∪ {xi = true };
6: φ := φ[ xi = true ];

7: else

8: t := t ∪ {xi = false };
9: φ := φ[ xi = false ];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if
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Analysis

• There are ≤ n + 1 calls to the algorithm for sat.a

• Shorter boolean expressions than φ are used in each call
to the algorithm for sat.

• So if sat can be solved in polynomial time, so can fsat.

• Hence sat and fsat are equally hard (or easy).

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.
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tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances
dij = dji between any two cities i and j.

• tsp asks for a tour with the shortest total distance.

– The shortest total distance is at most
∑

i,j dij .

∗ Recall that the input string contains d11, . . . , dnn.
∗ Thus the shortest total distance is at most 2| x |,

where x is the input.

• tsp (d) asks if there is a tour with a total distance at
most B.

• We next show that if tsp (d) ∈ P, then tsp has a
polynomial-time algorithm.
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An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [ 0, 2| x | ] by calling
tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do
3: Call tsp (d) with B = C and dij = C + 1;
4: if “no” then
5: Restore dij to old value; {Edge [ i, j ] is critical.}
6: end if
7: end for
8: return the tour with edges whose dij ≤ C;
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Analysis

• An edge that is not on any optimal tour will be
eliminated, with its dij set to C + 1.

• An edge which is not on all remaining optimal tours will
also be eliminated.

• So the algorithm ends with n edges which are not
eliminated (why?).

• There are O(|x |+ n2) calls to the algorithm for tsp (d).

• So if tsp (d) can be solved in polynomial time, so can
tsp.

• Hence tsp (d) and tsp are equally hard (or easy).
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Function Problems Are Not Harder than Decision
Problems If P = NP

Theorem 60 Suppose that P = NP. Then, for every NP
language L there exists a polynomial-time TM B that on
input x ∈ L outputs a certificate for x.

• We are looking for a certificate in the sense of
Proposition 34 (p. 267).

• That is, a certificate y for every x ∈ L such that

(x, y) ∈ R,

where R is a polynomially decidable and polynomially
balanced relation.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 433



The Proof (concluded)

• Recall the algorithm for fsat on p. 428.

• The reduction of Cook’s Theorem L to sat is a Levin
reduction (p. 271).

• So there is a polynomial-time computable function R

such that x ∈ L iff R(x) ∈ sat.

• In fact, more is true: R maps a satisfying assignment of
R(x) into a certificate for x.

• Therefore, we can use the algorithm for fsat to come up
with an assignment for R(x) and then map it back into
a certificate for x.
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What If NP = coNP?a

• Can you say similar things?
aContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
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Randomized Computation
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I know that half my advertising works,
I just don’t know which half.

— John Wanamaker

I know that half my advertising is
a waste of money,

I just don’t know which half!
— McGraw-Hill ad.
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Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no
known efficient deterministic algorithms but for which
very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithm for maximal independent set.
aRabin (1976); Solovay and Strassen (1977).
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“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay and Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair and Jerrum (1989).
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Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V, E).

– U = {u1, u2, . . . , un}.
– V = {v1, v2, . . . , vn}.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , n} such that

(ui, vπ(i)) ∈ E

for all ui ∈ U .
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A Perfect Matching

X�

X�

X�

X�

X�
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Y�

Y�

Y�

Y�
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Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a variable xij if (ui, vj) ∈ E and zero otherwise.
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Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑

π

sgn(π)
n∏

i=1

AG
i,π(i). (5)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of
transpositions and −1 otherwise.

– Equivalently, sgn(π) = 1 if the number of (i, j)s such
that i < j and π(i) > π(j) is even.a

aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.
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Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 AG
i,π(i), note the following:

– Each summand corresponds to a possible perfect
matching π.

– As all variables appear only once, all of these
summands are different monomials and will not
cancel.

• It is essentially an exhaustive enumeration.

Proposition 61 (Edmonds (1967)) G has a perfect
matching if and only if det(AG) is not identically zero.
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A Perfect Matching in a Bipartite Graph
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The Perfect Matching in the Determinant

• The matrix is

AG =




0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55




.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +
x14x22x31x43x55 − x13x22x31x44x55, each denoting a
perfect matching.
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How To Test If a Polynomial Is Identically Zero?

• det(AG) is a polynomial in n2 variables.

• There are exponentially many terms in det(AG).

• Expanding the determinant polynomial is not feasible.

– Too many terms.

• Observation: If det(AG) is identically zero, then it
remains zero if we substitute arbitrary integers for the
variables x11, . . . , xnn.

• What is the likelihood of obtaining a zero when det(AG)
is not identically zero?
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Number of Roots of a Polynomial

Lemma 62 (Schwartz (1980)) Let p(x1, x2, . . . , xm) 6≡ 0
be a polynomial in m variables each of degree at most d. Let
M ∈ Z+. Then the number of m-tuples

(x1, x2, . . . , xm) ∈ {0, 1, . . . ,M − 1}m

such that p(x1, x2, . . . , xm) = 0 is

≤ mdMm−1.

• By induction on m (consult the textbook).
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Density Attack

• The density of roots in the domain is at most

mdMm−1

Mm
=

md

M
. (6)

• So suppose p(x1, x2, . . . , xm) 6≡ 0.

• Then a random

(x1, x2, . . . , xm) ∈ { 0, 1, . . . , M − 1 }m

has a probability of ≤ md/M of being a root of p.

• Note that M is under our control.
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Density Attack (concluded)

Here is a sampling algorithm to test if p(x1, x2, . . . , xm) 6≡ 0.

1: Choose i1, . . . , im from {0, 1, . . . ,M − 1} randomly;
2: if p(i1, i2, . . . , im) 6= 0 then
3: return “p is not identically zero”;
4: else
5: return “p is probably identically zero”;
6: end if
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A Randomized Bipartite Perfect Matching Algorithma

We now return to the original problem of bipartite perfect
matching.

1: Choose n2 integers i11, . . . , inn from {0, 1, . . . , 2n2 − 1}
randomly;

2: Calculate det(AG(i11, . . . , inn)) by Gaussian elimination;
3: if det(AG(i11, . . . , inn)) 6= 0 then
4: return “G has a perfect matching”;
5: else
6: return “G has no perfect matchings”;
7: end if

aLovász (1979). According to Paul Erdős, Lovász wrote his first sig-

nificant paper “at the ripe old age of 17.”
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Analysis

• If G has no perfect matchings, the algorithm will always
be correct.

• Suppose G has a perfect matching.

– The algorithm will answer incorrectly with
probability at most n2d/(2n2) = 0.5 with d = 1 in
Eq. (6) on p. 449.

– Run the algorithm independently k times and output
“G has no perfect matchings” if they all say no.

– The error probability is now reduced to at most 2−k.

• Is there an (i11, . . . , inn) that will always give correct
answers for all bipartite graphs of 2n nodes?a

aThanks to a lively class discussion on November 24, 2004.
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Analysis (concluded)a

• Note that we are calculating

prob[ algorithm answers “no” |G has no perfect matchings ],

prob[ algorithm answers “yes” |G has a perfect matching ].

• We are not calculating

prob[G has no perfect matchings | algorithm answers “no” ],

prob[G has a perfect matching | algorithm answers “yes” ].

aThanks to a lively class discussion on May 1, 2008.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 453



But How Large Can det(AG(i11, . . . , inn)) Be?

• It is at most
n!

(
2n2

)n
.

• Stirling’s formula says n! ∼ √
2πn (n/e)n.

• Hence

log2 det(AG(i11, . . . , inn)) = O(n log2 n)

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all
intermediate results are of polynomial sizes.
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Lószló Lovász (1948–)
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Perfect Matching for General Graphs

• Page 440 is about bipartite perfect matching

• Now we are given a graph G = (V, E).

– V = {v1, v2, . . . , v2n}.
• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , 2n} such that

(vi, vπ(i)) ∈ E

for all vi ∈ V .
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The Tutte Matrixa

• Given a graph G = (V,E), construct the 2n× 2n Tutte
matrix TG such that

TG
ij =





xij if (vi, vj) ∈ E and i < j,

−xij if (vi, vj) ∈ E and i > j,

0 othersie.

• The Tutte matrix is a skew-symmetric symbolic matrix.

• Similar to Proposition 61 (p. 444):

Proposition 63 G has a perfect matching if and only if
det(TG) is not identically zero.

aWilliam Thomas Tutte (1917–2002).
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William Thomas Tutte (1917–2002)
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