Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide $p-1$.
- A primitive root of p is thus a number with exponent $p-1$.
- Let $R(k)$ denote the total number of residues in $\Phi(p)$ that have exponent k.
- We already knew that $R(k)=0$ for $k X(p-1)$.
- So

$$
\sum_{k \mid(p-1)} R(k)=p-1
$$

as every number has an exponent.

Size of $R(k)$

- Any $a \in \Phi(p)$ of exponent k satisfies $x^{k}=1 \bmod p$.
- Hence there are at most k residues of exponent k, i.e., $R(k) \leq k$, by Lemma 59 (p. 416).
- Let s be a residue of exponent k.
- $1, s, s^{2}, \ldots, s^{k-1}$ are distinct modulo p.
- Otherwise, $s^{i}=s^{j} \bmod p$ with $i<j$.
- Then $s^{j-i}=1 \bmod p$ with $j-i<k$, a contradiction.
- As all these k distinct numbers satisfy $x^{k}=1 \bmod p$, they comprise all solutions of $x^{k}=1 \bmod p$.

Size of $R(k)$ (continued)

- But do all of them have exponent k (i.e., $R(k)=k$)?
- And if not (i.e., $R(k)<k$), how many of them do?
- Suppose $\ell<k$ and $\ell \notin \Phi(k)$ with $\operatorname{gcd}(\ell, k)=d>1$.
- Then

$$
\left(s^{\ell}\right)^{k / d}=\left(s^{k}\right)^{\ell / d}=1 \bmod p
$$

- Therefore, s^{ℓ} has exponent at most k / d, which is less than k.
- We conclude that

$$
R(k) \leq \phi(k)
$$

Size of $R(k)$ (concluded)

- Because all $p-1$ residues have an exponent,

$$
p-1=\sum_{k \mid(p-1)} R(k) \leq \sum_{k \mid(p-1)} \phi(k)=p-1
$$

by Lemma 55 (p. 405).

- Hence

$$
R(k)=\left\{\begin{array}{cl}
\phi(k) & \text { when } k \mid(p-1) \\
0 & \text { otherwise }
\end{array}\right.
$$

- In particular, $R(p-1)=\phi(p-1)>0$, and p has at least one primitive root.
- This proves one direction of Theorem 51 (p. 393).

A Few Calculations

- Let $p=13$.
- From p. 413, we know $\phi(p-1)=4$.
- Hence $R(12)=4$.
- Indeed, there are 4 primitive roots of p.
- As $\Phi(p-1)=\{1,5,7,11\}$, the primitive roots are $g^{1}, g^{5}, g^{7}, g^{11}$ for any primitive root g.

The Other Direction of Theorem 51 (p. 393)

- We must show p is a prime only if there is a number r (called primitive root) such that

1. $r^{p-1}=1 \bmod p$, and
2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

- Suppose p is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1}=1 \bmod p($ note $\operatorname{gcd}(r, p)=1)$.
- We will show that the 2 nd condition must be violated.

The Proof (continued)

- $r^{\phi(p)}=1 \bmod p$ by the Fermat-Euler theorem (p. 413).
- Because p is not a prime, $\phi(p)<p-1$.
- Let k be the smallest integer such that $r^{k}=1 \bmod p$.
- By condition 1 , it is easy to show that $k \mid(p-1)$ (p. 416).
- Note that $k \mid \phi(p)(\mathrm{p} .416)$.
- As $k \leq \phi(p), k<p-1$.
- Let q be a prime divisor of $(p-1) / k>1$.
- Then $k \mid(p-1) / q$.

The Proof (concluded)

- Therefore, by virtue of the definition of k,

$$
r^{(p-1) / q}=1 \bmod p .
$$

- But this violates the 2nd condition.

Function Problems

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
- If you can find a satisfying truth assignment efficiently, then SAT is in P.
- If you can find the best TSP tour efficiently, then TSP (D) is in P .
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a boolean expression.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next show that if $\operatorname{sAT} \in \mathrm{P}$, then FSAT has a polynomial-time algorithm.

An Algorithm for FsAT Using sat

$t:=\epsilon ;$
if $\phi \in \operatorname{SAT}$ then

$$
\text { for } i=1,2, \ldots, n \text { do }
$$

$$
\text { if } \phi\left[x_{i}=\text { true }\right] \in \operatorname{SAT} \text { then }
$$

$$
t:=t \cup\left\{x_{i}=\text { true }\right\} ;
$$

$$
\phi:=\phi\left[x_{i}=\text { true }\right] ;
$$

else
$t:=t \cup\left\{x_{i}=\right.$ false $\} ;$
$\phi:=\phi\left[x_{i}=\mathrm{false}\right] ;$
end if
end for
return t;
else
14: return "no";
15: end if

Analysis

- There are $\leq n+1$ calls to the algorithm for sat. ${ }^{\text {a }}$
- Shorter boolean expressions than ϕ are used in each call to the algorithm for SAT.
- So if sat can be solved in polynomial time, so can fSAt.
- Hence sat and fsat are equally hard (or easy).
${ }^{\text {a }}$ Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.

TSP and TSP (D) Revisited

- We are given n cities $1,2, \ldots, n$ and integer distances $d_{i j}=d_{j i}$ between any two cities i and j.
- TSP asks for a tour with the shortest total distance.
- The shortest total distance is at most $\sum_{i, j} d_{i j}$.
* Recall that the input string contains $d_{11}, \ldots, d_{n n}$.
* Thus the shortest total distance is at most $2^{|x|}$, where x is the input.
- TSP (D) asks if there is a tour with a total distance at most B.
- We next show that if $\operatorname{TSP}(\mathrm{D}) \in \mathrm{P}$, then TSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

1: Perform a binary search over interval $\left[0,2^{|x|}\right]$ by calling TSP (D) to obtain the shortest distance, C;
2: for $i, j=1,2, \ldots, n$ do
3: \quad Call TSP (D) with $B=C$ and $d_{i j}=C+1$;
4: if "no" then
5: \quad Restore $d_{i j}$ to old value; $\{$ Edge $[i, j]$ is critical. $\}$
6: end if
7: end for
8: return the tour with edges whose $d_{i j} \leq C$;

Analysis

- An edge that is not on any optimal tour will be eliminated, with its $d_{i j}$ set to $C+1$.
- An edge which is not on all remaining optimal tours will also be eliminated.
- So the algorithm ends with n edges which are not eliminated (why?).
- There are $O\left(|x|+n^{2}\right)$ calls to the algorithm for TSP (D).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

Function Problems Are Not Harder than Decision Problems If $\mathrm{P}=\mathrm{NP}$

Theorem 60 Suppose that $P=N P$. Then, for every NP language L there exists a polynomial-time $T M B$ that on input $x \in L$ outputs a certificate for x.

- We are looking for a certificate in the sense of Proposition 34 (p. 267).
- That is, a certificate y for every $x \in L$ such that

$$
(x, y) \in R,
$$

where R is a polynomially decidable and polynomially balanced relation.

The Proof (concluded)

- Recall the algorithm for fsat on p. 428.
- The reduction of Cook's Theorem L to SAT is a Levin reduction (p. 271).
- So there is a polynomial-time computable function R such that $x \in L$ iff $R(x) \in$ sat.
- In fact, more is true: R maps a satisfying assignment of $R(x)$ into a certificate for x.
- Therefore, we can use the algorithm for FSAT to come up with an assignment for $R(x)$ and then map it back into a certificate for x.

What If NP = coNP? ${ }^{\text {a }}$

- Can you say similar things?
${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

Randomized Computation

I know that half my advertising works, I just don't know which half. - John Wanamaker

I know that half my advertising is
a waste of money, I just don't know which half!

- McGraw-Hill ad.

Randomized Algorithms ${ }^{\text {a }}$

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient deterministic algorithms but for which very efficient randomized algorithms exist.
- Extraction of square roots, for instance.
- There are problems where randomization is necessary.
- Secure protocols.
- Randomized version can be more efficient.
- Parallel algorithm for maximal independent set.

[^0]
"Four Most Important Randomized Algorithms" a

1. Primality testing. ${ }^{\text {b }}$
2. Graph connectivity using random walks. ${ }^{\text {c }}$
3. Polynomial identity testing. ${ }^{\text {d }}$
4. Algorithms for approximate counting. ${ }^{\text {e }}$
${ }^{\text {a }}$ Trevisan (2006).
${ }^{\mathrm{b}}$ Rabin (1976); Solovay and Strassen (1977).
${ }^{c}$ Aleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
${ }^{\text {d }}$ Schwartz (1980); Zippel (1979).
${ }^{\mathrm{e}}$ Sinclair and Jerrum (1989).

Bipartite Perfect Matching

- We are given a bipartite graph $G=(U, V, E)$.
$-U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.
$-V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- $E \subseteq U \times V$.
- We are asked if there is a perfect matching.
- A permutation π of $\{1,2, \ldots, n\}$ such that

$$
\left(u_{i}, v_{\pi(i)}\right) \in E
$$

for all $u_{i} \in U$.

Symbolic Determinants

- We are given a bipartite graph G.
- Construct the $n \times n$ matrix A^{G} whose (i, j) th entry $A_{i j}^{G}$ is a variable $x_{i j}$ if $\left(u_{i}, v_{j}\right) \in E$ and zero otherwise.

Symbolic Determinants (concluded)

- The determinant of A^{G} is

$$
\begin{equation*}
\operatorname{det}\left(A^{G}\right)=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G} \tag{5}
\end{equation*}
$$

$-\pi$ ranges over all permutations of n elements.
$-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.

- Equivalently, $\operatorname{sgn}(\pi)=1$ if the number of $(i, j) \mathrm{s}$ such that $i<j$ and $\pi(i)>\pi(j)$ is even. ${ }^{\text {a }}$

[^1]
Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G}$, note the following:
- Each summand corresponds to a possible perfect matching π.
- As all variables appear only once, all of these summands are different monomials and will not cancel.
- It is essentially an exhaustive enumeration.

Proposition 61 (Edmonds (1967)) G has a perfect matching if and only if $\operatorname{det}\left(A^{G}\right)$ is not identically zero.

A Perfect Matching in a Bipartite Graph

The Perfect Matching in the Determinant

- The matrix is

$$
A^{G}=\left[\begin{array}{ccccc}
0 & 0 & x_{13} & \boxed{x_{14}} & 0 \\
0 & \boxed{x_{22}} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & \begin{array}{|c}
x_{35} \\
x_{41} \\
0
\end{array} \\
x_{43} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{array}\right] .
$$

- $\operatorname{det}\left(A^{G}\right)=-x_{14} x_{22} x_{35} x_{43} x_{51}+x_{13} x_{22} x_{35} x_{44} x_{51}+$ $x_{14} x_{22} x_{31} x_{43} x_{55}-x_{13} x_{22} x_{31} x_{44} x_{55}$, each denoting a perfect matching.

How To Test If a Polynomial Is Identically Zero?

- $\operatorname{det}\left(A^{G}\right)$ is a polynomial in n^{2} variables.
- There are exponentially many terms in $\operatorname{det}\left(A^{G}\right)$.
- Expanding the determinant polynomial is not feasible.
- Too many terms.
- Observation: If $\operatorname{det}\left(A^{G}\right)$ is identically zero, then it remains zero if we substitute arbitrary integers for the variables $x_{11}, \ldots, x_{n n}$.
- What is the likelihood of obtaining a zero when $\operatorname{det}\left(A^{G}\right)$ is not identically zero?

Number of Roots of a Polynomial

Lemma 62 (Schwartz (1980)) Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^{+}$. Then the number of m-tuples

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\{0,1, \ldots, M-1\}^{m}
$$

such that $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=0$ is

$$
\leq m d M^{m-1} .
$$

- By induction on m (consult the textbook).

Density Attack

- The density of roots in the domain is at most

$$
\begin{equation*}
\frac{m d M^{m-1}}{M^{m}}=\frac{m d}{M} \tag{6}
\end{equation*}
$$

- So suppose $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
- Then a random

$$
\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in\{0,1, \ldots, M-1\}^{m}
$$

has a probability of $\leq m d / M$ of being a root of p.

- Note that M is under our control.

Density Attack (concluded)

Here is a sampling algorithm to test if $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \not \equiv 0$.
1: Choose i_{1}, \ldots, i_{m} from $\{0,1, \ldots, M-1\}$ randomly;
2: if $p\left(i_{1}, i_{2}, \ldots, i_{m}\right) \neq 0$ then
3: return " p is not identically zero";
4: else
5: return " p is probably identically zero";
6: end if

A Randomized Bipartite Perfect Matching Algorithm ${ }^{\text {a }}$

We now return to the original problem of bipartite perfect matching.
1: Choose n^{2} integers $i_{11}, \ldots, i_{n n}$ from $\left\{0,1, \ldots, 2 n^{2}-1\right\}$ randomly;
2: Calculate $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right)$ by Gaussian elimination; 3: if $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right) \neq 0$ then
4: return " G has a perfect matching";
5: else
6: return " G has no perfect matchings";
7: end if
${ }^{\text {a }}$ Lovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17. ."

Analysis

- If G has no perfect matchings, the algorithm will always be correct.
- Suppose G has a perfect matching.
- The algorithm will answer incorrectly with probability at most $n^{2} d /\left(2 n^{2}\right)=0.5$ with $d=1$ in Eq. (6) on p. 449.
- Run the algorithm independently k times and output " G has no perfect matchings" if they all say no.
- The error probability is now reduced to at most 2^{-k}.
- Is there an $\left(i_{11}, \ldots, i_{n n}\right)$ that will always give correct answers for all bipartite graphs of $2 n$ nodes? ${ }^{\text {a }}$

[^2]
Analysis (concluded) ${ }^{\text {a }}$

- Note that we are calculating
prob[algorithm answers "no" $\mid G$ has no perfect matchings], prob[algorithm answers "yes" $\mid G$ has a perfect matching].
- We are not calculating
$\operatorname{prob}[G$ has no perfect matchings|algorithm answers "no"], $\operatorname{prob}[G$ has a perfect matching |algorithm answers "yes"].
${ }^{\text {a }}$ Thanks to a lively class discussion on May 1, 2008.

But How Large Can $\operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right) \mathrm{Be}$?

- It is at most

$$
n!\left(2 n^{2}\right)^{n}
$$

- Stirling's formula says $n!\sim \sqrt{2 \pi n}(n / e)^{n}$.
- Hence

$$
\log _{2} \operatorname{det}\left(A^{G}\left(i_{11}, \ldots, i_{n n}\right)\right)=O\left(n \log _{2} n\right)
$$

bits are sufficient for representing the determinant.

- We skip the details about how to make sure that all intermediate results are of polynomial sizes.

Lószló Lovász (1948-)

Perfect Matching for General Graphs

- Page 440 is about bipartite perfect matching
- Now we are given a graph $G=(V, E)$.
$-V=\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$.
- We are asked if there is a perfect matching.
- A permutation π of $\{1,2, \ldots, 2 n\}$ such that

$$
\left(v_{i}, v_{\pi(i)}\right) \in E
$$

for all $v_{i} \in V$.

The Tutte Matrix ${ }^{\text {a }}$

- Given a graph $G=(V, E)$, construct the $2 n \times 2 n$ Tutte matrix T^{G} such that

$$
T_{i j}^{G}= \begin{cases}x_{i j} & \text { if }\left(v_{i}, v_{j}\right) \in E \text { and } i<j \\ -x_{i j} & \text { if }\left(v_{i}, v_{j}\right) \in E \text { and } i>j \\ 0 & \text { othersie }\end{cases}
$$

- The Tutte matrix is a skew-symmetric symbolic matrix.
- Similar to Proposition 61 (p. 444):

Proposition $63 G$ has a perfect matching if and only if $\operatorname{det}\left(T^{G}\right)$ is not identically zero.

[^3]
William Thomas Tutte (1917-2002)

[^0]: ${ }^{\text {a }}$ Rabin (1976); Solovay and Strassen (1977).

[^1]: ${ }^{\text {a }}$ Contributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

[^2]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 24, 2004.

[^3]: ${ }^{a}$ William Thomas Tutte (1917-2002).

