
Exponents and Primitive Roots

• From Fermat’s “little” theorem, all exponents divide
p− 1.

• A primitive root of p is thus a number with exponent
p− 1.

• Let R(k) denote the total number of residues in Φ(p)
that have exponent k.

• We already knew that R(k) = 0 for k 6 |(p− 1).

• So ∑

k|(p−1)

R(k) = p− 1

as every number has an exponent.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 417

Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies xk = 1 mod p.

• Hence there are at most k residues of exponent k, i.e.,
R(k) ≤ k, by Lemma 59 (p. 416).

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si = sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,
they comprise all solutions of xk = 1 mod p.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 418

Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Suppose ` < k and ` 6∈ Φ(k) with gcd(`, k) = d > 1.

• Then
(s`)k/d = (sk)`/d = 1 mod p.

• Therefore, s` has exponent at most k/d, which is less
than k.

• We conclude that

R(k) ≤ φ(k).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 419

Size of R(k) (concluded)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k|(p−1)

R(k) ≤
∑

k|(p−1)

φ(k) = p− 1

by Lemma 55 (p. 405).

• Hence

R(k) =

φ(k) when k|(p− 1)

0 otherwise

• In particular, R(p− 1) = φ(p− 1) > 0, and p has at least
one primitive root.

• This proves one direction of Theorem 51 (p. 393).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 420

A Few Calculations

• Let p = 13.

• From p. 413, we know φ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As Φ(p− 1) = {1, 5, 7, 11}, the primitive roots are
g1, g5, g7, g11 for any primitive root g.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 421

The Other Direction of Theorem 51 (p. 393)

• We must show p is a prime only if there is a number r

(called primitive root) such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q 6= 1 mod p for all prime divisors q of p− 1.

• Suppose p is not a prime.

• We proceed to show that no primitive roots exist.

• Suppose rp−1 = 1 mod p (note gcd(r, p) = 1).

• We will show that the 2nd condition must be violated.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 422

The Proof (continued)

• rφ(p) = 1 mod p by the Fermat-Euler theorem (p. 413).

• Because p is not a prime, φ(p) < p− 1.

• Let k be the smallest integer such that rk = 1 mod p.

– By condition 1, it is easy to show that k | (p− 1)
(p. 416).

• Note that k |φ(p) (p. 416).

• As k ≤ φ(p), k < p− 1.

• Let q be a prime divisor of (p− 1)/k > 1.

• Then k|(p− 1)/q.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 423

The Proof (concluded)

• Therefore, by virtue of the definition of k,

r(p−1)/q = 1 mod p.

• But this violates the 2nd condition.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 424

Function Problems

• Decision problems are yes/no problems (sat, tsp (d),
etc.).

• Function problems require a solution (a satisfying
truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision
problems?

• Which one is harder?

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 425

Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the
corresponding decision problem.

– If you can find a satisfying truth assignment
efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the
corresponding function problems.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 426

fsat

• fsat is this function problem:

– Let φ(x1, x2, . . . , xn) be a boolean expression.

– If φ is satisfiable, then return a satisfying truth
assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a
polynomial-time algorithm.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 427

An Algorithm for fsat Using sat
1: t := ε;

2: if φ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if φ[xi = true] ∈ sat then

5: t := t ∪ {xi = true };
6: φ := φ[xi = true];

7: else

8: t := t ∪ {xi = false };
9: φ := φ[xi = false];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 428

Analysis

• There are ≤ n + 1 calls to the algorithm for sat.a

• Shorter boolean expressions than φ are used in each call
to the algorithm for sat.

• So if sat can be solved in polynomial time, so can fsat.

• Hence sat and fsat are equally hard (or easy).

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 429

tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances
dij = dji between any two cities i and j.

• tsp asks for a tour with the shortest total distance.

– The shortest total distance is at most
∑

i,j dij .

∗ Recall that the input string contains d11, . . . , dnn.
∗ Thus the shortest total distance is at most 2| x |,

where x is the input.

• tsp (d) asks if there is a tour with a total distance at
most B.

• We next show that if tsp (d) ∈ P, then tsp has a
polynomial-time algorithm.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 430

An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [0, 2| x |] by calling
tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do
3: Call tsp (d) with B = C and dij = C + 1;
4: if “no” then
5: Restore dij to old value; {Edge [i, j] is critical.}
6: end if
7: end for
8: return the tour with edges whose dij ≤ C;

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 431

Analysis

• An edge that is not on any optimal tour will be
eliminated, with its dij set to C + 1.

• An edge which is not on all remaining optimal tours will
also be eliminated.

• So the algorithm ends with n edges which are not
eliminated (why?).

• There are O(|x |+ n2) calls to the algorithm for tsp (d).

• So if tsp (d) can be solved in polynomial time, so can
tsp.

• Hence tsp (d) and tsp are equally hard (or easy).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 432

Function Problems Are Not Harder than Decision
Problems If P = NP

Theorem 60 Suppose that P = NP. Then, for every NP
language L there exists a polynomial-time TM B that on
input x ∈ L outputs a certificate for x.

• We are looking for a certificate in the sense of
Proposition 34 (p. 267).

• That is, a certificate y for every x ∈ L such that

(x, y) ∈ R,

where R is a polynomially decidable and polynomially
balanced relation.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 433

The Proof (concluded)

• Recall the algorithm for fsat on p. 428.

• The reduction of Cook’s Theorem L to sat is a Levin
reduction (p. 271).

• So there is a polynomial-time computable function R

such that x ∈ L iff R(x) ∈ sat.

• In fact, more is true: R maps a satisfying assignment of
R(x) into a certificate for x.

• Therefore, we can use the algorithm for fsat to come up
with an assignment for R(x) and then map it back into
a certificate for x.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 434

What If NP = coNP?a

• Can you say similar things?
aContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 435

Randomized Computation

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 436

I know that half my advertising works,
I just don’t know which half.

— John Wanamaker

I know that half my advertising is
a waste of money,

I just don’t know which half!
— McGraw-Hill ad.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 437

Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no
known efficient deterministic algorithms but for which
very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithm for maximal independent set.
aRabin (1976); Solovay and Strassen (1977).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 438

“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay and Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair and Jerrum (1989).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 439

Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V, E).

– U = {u1, u2, . . . , un}.
– V = {v1, v2, . . . , vn}.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , n} such that

(ui, vπ(i)) ∈ E

for all ui ∈ U .

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 440

A Perfect Matching

X�

X�

X�

X�

X�

Y�

Y�

Y�

Y�

Y�

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 441

Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a variable xij if (ui, vj) ∈ E and zero otherwise.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 442

Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑

π

sgn(π)
n∏

i=1

AG
i,π(i). (5)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of
transpositions and −1 otherwise.

– Equivalently, sgn(π) = 1 if the number of (i, j)s such
that i < j and π(i) > π(j) is even.a

aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 443

Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 AG
i,π(i), note the following:

– Each summand corresponds to a possible perfect
matching π.

– As all variables appear only once, all of these
summands are different monomials and will not
cancel.

• It is essentially an exhaustive enumeration.

Proposition 61 (Edmonds (1967)) G has a perfect
matching if and only if det(AG) is not identically zero.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 444

A Perfect Matching in a Bipartite Graph

X�

X�

X�

X�

X�

Y�

Y�

Y�

Y�

Y�

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 445

The Perfect Matching in the Determinant

• The matrix is

AG =

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +
x14x22x31x43x55 − x13x22x31x44x55, each denoting a
perfect matching.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 446

How To Test If a Polynomial Is Identically Zero?

• det(AG) is a polynomial in n2 variables.

• There are exponentially many terms in det(AG).

• Expanding the determinant polynomial is not feasible.

– Too many terms.

• Observation: If det(AG) is identically zero, then it
remains zero if we substitute arbitrary integers for the
variables x11, . . . , xnn.

• What is the likelihood of obtaining a zero when det(AG)
is not identically zero?

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 447

Number of Roots of a Polynomial

Lemma 62 (Schwartz (1980)) Let p(x1, x2, . . . , xm) 6≡ 0
be a polynomial in m variables each of degree at most d. Let
M ∈ Z+. Then the number of m-tuples

(x1, x2, . . . , xm) ∈ {0, 1, . . . ,M − 1}m

such that p(x1, x2, . . . , xm) = 0 is

≤ mdMm−1.

• By induction on m (consult the textbook).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 448

Density Attack

• The density of roots in the domain is at most

mdMm−1

Mm
=

md

M
. (6)

• So suppose p(x1, x2, . . . , xm) 6≡ 0.

• Then a random

(x1, x2, . . . , xm) ∈ { 0, 1, . . . , M − 1 }m

has a probability of ≤ md/M of being a root of p.

• Note that M is under our control.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 449

Density Attack (concluded)

Here is a sampling algorithm to test if p(x1, x2, . . . , xm) 6≡ 0.

1: Choose i1, . . . , im from {0, 1, . . . ,M − 1} randomly;
2: if p(i1, i2, . . . , im) 6= 0 then
3: return “p is not identically zero”;
4: else
5: return “p is probably identically zero”;
6: end if

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 450

A Randomized Bipartite Perfect Matching Algorithma

We now return to the original problem of bipartite perfect
matching.

1: Choose n2 integers i11, . . . , inn from {0, 1, . . . , 2n2 − 1}
randomly;

2: Calculate det(AG(i11, . . . , inn)) by Gaussian elimination;
3: if det(AG(i11, . . . , inn)) 6= 0 then
4: return “G has a perfect matching”;
5: else
6: return “G has no perfect matchings”;
7: end if

aLovász (1979). According to Paul Erdős, Lovász wrote his first sig-

nificant paper “at the ripe old age of 17.”

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 451

Analysis

• If G has no perfect matchings, the algorithm will always
be correct.

• Suppose G has a perfect matching.

– The algorithm will answer incorrectly with
probability at most n2d/(2n2) = 0.5 with d = 1 in
Eq. (6) on p. 449.

– Run the algorithm independently k times and output
“G has no perfect matchings” if they all say no.

– The error probability is now reduced to at most 2−k.

• Is there an (i11, . . . , inn) that will always give correct
answers for all bipartite graphs of 2n nodes?a

aThanks to a lively class discussion on November 24, 2004.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 452

Analysis (concluded)a

• Note that we are calculating

prob[algorithm answers “no” |G has no perfect matchings],

prob[algorithm answers “yes” |G has a perfect matching].

• We are not calculating

prob[G has no perfect matchings | algorithm answers “no”],

prob[G has a perfect matching | algorithm answers “yes”].

aThanks to a lively class discussion on May 1, 2008.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 453

But How Large Can det(AG(i11, . . . , inn)) Be?

• It is at most
n!

(
2n2

)n
.

• Stirling’s formula says n! ∼ √
2πn (n/e)n.

• Hence

log2 det(AG(i11, . . . , inn)) = O(n log2 n)

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all
intermediate results are of polynomial sizes.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 454

Lószló Lovász (1948–)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455

Perfect Matching for General Graphs

• Page 440 is about bipartite perfect matching

• Now we are given a graph G = (V, E).

– V = {v1, v2, . . . , v2n}.
• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , 2n} such that

(vi, vπ(i)) ∈ E

for all vi ∈ V .

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 456

The Tutte Matrixa

• Given a graph G = (V,E), construct the 2n× 2n Tutte
matrix TG such that

TG
ij =

xij if (vi, vj) ∈ E and i < j,

−xij if (vi, vj) ∈ E and i > j,

0 othersie.

• The Tutte matrix is a skew-symmetric symbolic matrix.

• Similar to Proposition 61 (p. 444):

Proposition 63 G has a perfect matching if and only if
det(TG) is not identically zero.

aWilliam Thomas Tutte (1917–2002).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 457

William Thomas Tutte (1917–2002)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 458

