Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide p-1.
- A primitive root of p is thus a number with exponent p-1.
- Let R(k) denote the total number of residues in $\Phi(p)$ that have exponent k.
- We already knew that R(k) = 0 for $k \not| (p-1)$.
- So

$$\sum_{k|(p-1)} R(k) = p - 1$$

as every number has an exponent.

Size of R(k)

- Any $a \in \Phi(p)$ of exponent k satisfies $x^k = 1 \mod p$.
- Hence there are at most k residues of exponent k, i.e., $R(k) \leq k$, by Lemma 59 (p. 416).
- Let s be a residue of exponent k.
- $1, s, s^2, \ldots, s^{k-1}$ are distinct modulo p.
 - Otherwise, $s^i = s^j \mod p$ with i < j.
 - Then $s^{j-i} = 1 \mod p$ with j i < k, a contradiction.
- As all these k distinct numbers satisfy $x^k = 1 \mod p$, they comprise all solutions of $x^k = 1 \mod p$.

Size of R(k) (continued)

- But do all of them have exponent k (i.e., R(k) = k)?
- And if not (i.e., R(k) < k), how many of them do?
- Suppose $\ell < k$ and $\ell \notin \Phi(k)$ with $gcd(\ell, k) = d > 1$.
- Then

$$(s^{\ell})^{k/d} = (s^k)^{\ell/d} = 1 \mod p.$$

- Therefore, s^{ℓ} has exponent at most k/d, which is less than k.
- We conclude that

$$R(k) \le \phi(k).$$

Size of R(k) (concluded)

• Because all p-1 residues have an exponent,

$$p - 1 = \sum_{k \mid (p-1)} R(k) \le \sum_{k \mid (p-1)} \phi(k) = p - 1$$

by Lemma 55 (p. 405).

• Hence

$$R(k) = \begin{cases} \phi(k) & \text{when } k | (p-1) \\ 0 & \text{otherwise} \end{cases}$$

- In particular, $R(p-1) = \phi(p-1) > 0$, and p has at least one primitive root.
- This proves one direction of Theorem 51 (p. 393).

A Few Calculations

- Let p = 13.
- From p. 413, we know $\phi(p-1) = 4$.
- Hence R(12) = 4.
- Indeed, there are 4 primitive roots of p.
- As $\Phi(p-1) = \{1, 5, 7, 11\}$, the primitive roots are g^1, g^5, g^7, g^{11} for any primitive root g.

The Other Direction of Theorem 51 (p. 393)

• We must show p is a prime only if there is a number r (called primitive root) such that

1. $r^{p-1} = 1 \mod p$, and

2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.

- Suppose p is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1} = 1 \mod p$ (note gcd(r, p) = 1).
- We will show that the 2nd condition must be violated.

The Proof (continued)

- $r^{\phi(p)} = 1 \mod p$ by the Fermat-Euler theorem (p. 413).
- Because p is not a prime, $\phi(p) .$
- Let k be the smallest integer such that $r^k = 1 \mod p$.
 - By condition 1, it is easy to show that $k \mid (p-1)$ (p. 416).
- Note that $k \mid \phi(p)$ (p. 416).
- As $k \le \phi(p), k .$
- Let q be a prime divisor of (p-1)/k > 1.
- Then k|(p-1)/q.

The Proof (concluded)

• Therefore, by virtue of the definition of k,

 $r^{(p-1)/q} = 1 \bmod p.$

• But this violates the 2nd condition.

Function Problems

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
 - If you can find a satisfying truth assignment efficiently, then SAT is in P.
 - If you can find the best TSP tour efficiently, then TSP
 (D) is in P.
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
 - Let $\phi(x_1, x_2, \ldots, x_n)$ be a boolean expression.
 - If ϕ is satisfiable, then return a satisfying truth assignment.
 - Otherwise, return "no."
- We next show that if $SAT \in P$, then FSAT has a polynomial-time algorithm.

Analysis

- There are $\leq n+1$ calls to the algorithm for SAT.^a
- Shorter boolean expressions than ϕ are used in each call to the algorithm for SAT.
- So if SAT can be solved in polynomial time, so can FSAT.
- Hence SAT and FSAT are equally hard (or easy).

^aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

TSP and TSP (D) Revisited

- We are given n cities 1, 2, ..., n and integer distances $d_{ij} = d_{ji}$ between any two cities i and j.
- TSP asks for a tour with the shortest total distance.
 - The shortest total distance is at most $\sum_{i,j} d_{ij}$.
 - * Recall that the input string contains d_{11}, \ldots, d_{nn} .
 - * Thus the shortest total distance is at most $2^{|x|}$, where x is the input.
- TSP (D) asks if there is a tour with a total distance at most B.
- We next show that if TSP $(D) \in P$, then TSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

- Perform a binary search over interval [0,2^{|x|}] by calling TSP (D) to obtain the shortest distance, C;
- 2: for i, j = 1, 2, ..., n do

3: Call TSP (D) with
$$B = C$$
 and $d_{ij} = C + 1$;

- 4: **if** "no" **then**
- 5: Restore d_{ij} to old value; {Edge [i, j] is critical.}
- 6: **end if**
- 7: end for
- 8: **return** the tour with edges whose $d_{ij} \leq C$;

Analysis

- An edge that is not on *any* optimal tour will be eliminated, with its d_{ij} set to C + 1.
- An edge which is not on *all remaining* optimal tours will also be eliminated.
- So the algorithm ends with *n* edges which are not eliminated (why?).
- There are $O(|x| + n^2)$ calls to the algorithm for TSP (D).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

Function Problems Are Not Harder than Decision Problems If $\mathsf{P}=\mathsf{N}\mathsf{P}$

Theorem 60 Suppose that P = NP. Then, for every NP language L there exists a polynomial-time TM B that on input $x \in L$ outputs a certificate for x.

- We are looking for a certificate in the sense of Proposition 34 (p. 267).
- That is, a certificate y for every $x \in L$ such that

 $(x,y) \in R,$

where R is a polynomially decidable and polynomially balanced relation.

The Proof (concluded)

- Recall the algorithm for FSAT on p. 428.
- The reduction of Cook's Theorem L to SAT is a Levin reduction (p. 271).
- So there is a polynomial-time computable function R such that $x \in L$ iff $R(x) \in SAT$.
- In fact, more is true: R maps a satisfying assignment of R(x) into a certificate for x.
- Therefore, we can use the algorithm for FSAT to come up with an assignment for R(x) and then map it back into a certificate for x.

What If NP = coNP?^a

• Can you say similar things?

^aContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

Randomized Computation

I know that half my advertising works, I just don't know which half. — John Wanamaker

> I know that half my advertising is a waste of money, I just don't know which half! — McGraw-Hill ad.

Randomized Algorithms $^{\rm a}$

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient *deterministic* algorithms but for which very efficient randomized algorithms exist.

- Extraction of square roots, for instance.

- There are problems where randomization is *necessary*.
 - Secure protocols.
- Randomized version can be more efficient.
 - Parallel algorithm for maximal independent set.

^aRabin (1976); Solovay and Strassen (1977).

"Four Most Important Randomized Algorithms" $^{\rm a}$

- 1. Primality testing.^b
- 2. Graph connectivity using random walks.^c
- 3. Polynomial identity testing.^d
- 4. Algorithms for approximate counting.^e

^aTrevisan (2006).
^bRabin (1976); Solovay and Strassen (1977).
^cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
^dSchwartz (1980); Zippel (1979).
^eSinclair and Jerrum (1989).

Bipartite Perfect Matching

• We are given a **bipartite graph** G = (U, V, E).

$$- U = \{u_1, u_2, \dots, u_n\}.$$
$$- V = \{v_1, v_2, \dots, v_n\}.$$
$$- E \subset U \times V.$$

- We are asked if there is a **perfect matching**.
 - A permutation π of $\{1, 2, \ldots, n\}$ such that

$$(u_i, v_{\pi(i)}) \in E$$

for all $u_i \in U$.

Symbolic Determinants

- We are given a bipartite graph G.
- Construct the $n \times n$ matrix A^G whose (i, j)th entry A_{ij}^G is a variable x_{ij} if $(u_i, v_j) \in E$ and zero otherwise.

Symbolic Determinants (concluded)

• The **determinant** of A^G is

$$\det(A^G) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^n A^G_{i,\pi(i)}.$$
 (5)

- π ranges over all permutations of n elements.
- $sgn(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.
- Equivalently, $sgn(\pi) = 1$ if the number of (i, j)s such that i < j and $\pi(i) > \pi(j)$ is even.^a

^aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}$, note the following:
 - Each summand corresponds to a possible perfect matching π .
 - As all variables appear only *once*, all of these summands are different monomials and will not cancel.
- It is essentially an exhaustive enumeration.

Proposition 61 (Edmonds (1967)) G has a perfect matching if and only if $det(A^G)$ is not identically zero.

How To Test If a Polynomial Is Identically Zero?

- $det(A^G)$ is a polynomial in n^2 variables.
- There are exponentially many terms in $det(A^G)$.
- Expanding the determinant polynomial is not feasible.
 Too many terms.
- Observation: If $det(A^G)$ is *identically zero*, then it remains zero if we substitute *arbitrary* integers for the variables x_{11}, \ldots, x_{nn} .
- What is the likelihood of obtaining a zero when $det(A^G)$ is *not* identically zero?

Number of Roots of a Polynomial

Lemma 62 (Schwartz (1980)) Let $p(x_1, x_2, ..., x_m) \neq 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^+$. Then the number of m-tuples

 $(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$

such that $p(x_1, x_2, ..., x_m) = 0$ is

 $\leq m d M^{m-1}$

• By induction on m (consult the textbook).

Density Attack

• The density of roots in the domain is at most

$$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}.$$
(6)

- So suppose $p(x_1, x_2, \ldots, x_m) \neq 0$.
- Then a random

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

has a probability of $\leq md/M$ of being a root of p.

• Note that M is under our control.

Density Attack (concluded)

Here is a sampling algorithm to test if $p(x_1, x_2, \ldots, x_m) \neq 0$.

- 1: Choose i_1, \ldots, i_m from $\{0, 1, \ldots, M-1\}$ randomly;
- 2: **if** $p(i_1, i_2, ..., i_m) \neq 0$ **then**
- 3: **return** "p is not identically zero";
- 4: **else**
- 5: **return** "p is probably identically zero";
- 6: end if

A Randomized Bipartite Perfect Matching Algorithm^a

We now return to the original problem of bipartite perfect matching.

- 1: Choose n^2 integers i_{11}, \ldots, i_{nn} from $\{0, 1, \ldots, 2n^2 1\}$ randomly;
- 2: Calculate det $(A^G(i_{11},\ldots,i_{nn}))$ by Gaussian elimination;
- 3: **if** $det(A^G(i_{11}, ..., i_{nn})) \neq 0$ **then**
- 4: **return** "*G* has a perfect matching";

5: **else**

6: **return** "G has no perfect matchings";

7: end if

^aLovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17."

Analysis

- If G has no perfect matchings, the algorithm will always be correct.
- Suppose G has a perfect matching.
 - The algorithm will answer incorrectly with probability at most $n^2 d/(2n^2) = 0.5$ with d = 1 in Eq. (6) on p. 449.
 - Run the algorithm *independently* k times and output "G has no perfect matchings" if they all say no.
 - The error probability is now reduced to at most 2^{-k} .
- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for all bipartite graphs of 2n nodes?^a

^aThanks to a lively class discussion on November 24, 2004.

Analysis (concluded)^a

• Note that we are calculating

prob[algorithm answers "no" | G has no perfect matchings], prob[algorithm answers "yes" | G has a perfect matching].

• We are *not* calculating

 $\operatorname{prob}[G \text{ has no perfect matchings} | algorithm answers "no"],$ $<math>\operatorname{prob}[G \text{ has a perfect matching} | algorithm answers "yes"].$

^aThanks to a lively class discussion on May 1, 2008.

But How Large Can det $(A^G(i_{11}, \ldots, i_{nn}))$ Be?

• It is at most

$$n! \left(2n^2\right)^n$$
.

- Stirling's formula says $n! \sim \sqrt{2\pi n} (n/e)^n$.
- Hence

$$\log_2 \det(A^G(i_{11},\ldots,i_{nn})) = O(n\log_2 n)$$

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all intermediate results are of polynomial sizes.

Perfect Matching for General Graphs

- Page 440 is about bipartite perfect matching
- Now we are given a graph G = (V, E). - $V = \{v_1, v_2, \dots, v_{2n}\}.$
- We are asked if there is a perfect matching.
 - A permutation π of $\{1, 2, \ldots, 2n\}$ such that

$$(v_i, v_{\pi(i)}) \in E$$

for all $v_i \in V$.

The Tutte $\ensuremath{\mathsf{Matrix}}^a$

• Given a graph G = (V, E), construct the $2n \times 2n$ **Tutte** matrix T^G such that

$$T_{ij}^G = \begin{cases} x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i < j, \\ -x_{ij} & \text{if } (v_i, v_j) \in E \text{ and } i > j, \\ 0 & \text{othersie.} \end{cases}$$

- The Tutte matrix is a skew-symmetric symbolic matrix.
- Similar to Proposition 61 (p. 444):

Proposition 63 G has a perfect matching if and only if $det(T^G)$ is not identically zero.

^aWilliam Thomas Tutte (1917–2002).

William Thomas Tutte (1917–2002)

