Theory of Computation

Mid-Term Examination on November 10, 2009
Problem 1 (25 points). Show that if NP $\subseteq \operatorname{NSPACE}\left(n^{2}\right)$, then NP \neq PSPACE.

Problem 2 (25 points). Let the mix hamiltonian path problem ask whether, given two undirected graphs, exactly one of them has a Hamiltonian path. Prove or disprove that mix hamiltonian path is NP-hard.

Problem 3 (25 points). It is known that EXP-hard languages exist. Can every NP-complete language be reduced to an EXP-hard language? Briefly justify your answer.

Problem 4 (25 points). Show that if both L and \bar{L} are recursively enumerable languages, then L is recursive.

