BIN PACKING

- We are given N positive integers $a_{1}, a_{2}, \ldots, a_{N}$, an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 46 BIN PACKING is NP-complete.

INTEGER PROGRAMMING

- INTEGER PROGRAMmING asks whether a system of linear inequalities with integer coefficients has an integer solution.
- In contrast, LINEAR PROGRAMMING asks whether a system of linear inequalities with integer coefficients has a rational solution.

INTEGER PROGRAMMING Is NP-Complete ${ }^{\text {a }}$

- SEt COVERING can be expressed by the inequalities $A x \geq \overrightarrow{1}, \sum_{i=1}^{n} x_{i} \leq B, 0 \leq x_{i} \leq 1$, where
$-x_{i}$ is one if and only if S_{i} is in the cover.
- A is the matrix whose columns are the bit vectors of the sets S_{1}, S_{2}, \ldots
$-\overrightarrow{1}$ is the vector of 1 s .
- The operations in $A x$ are standard matrix operations.
- This shows integer programming is NP-hard.
- Many NP-complete problems can be expressed as an INTEGER PROGRAMMING problem.

[^0]
Christos Papadimitriou

Easier or Harder? ${ }^{\text {a }}$

- Adding restrictions on the allowable problem instances will not make a problem harder.
- We are now solving a subset of problem instances.
- The independent set proof (p. 302) and the KNAPSACK proof (p. 361).
- SAT to 2SAT (easier by p. 285).
- CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (equally hard by p. 257).

[^1]
Easier or Harder? (concluded)

- Adding restrictions on the allowable solutions may make a problem easier, as hard, or harder.
- It is problem dependent.
- MIN CUT to BISECTION WIDTH (harder by p. 328).
- LINEAR PROGRAMMING to INTEGER PROGRAMMING (harder by p. 371).
- SAT to NAESAT (equally hard by p. 296) and mAx CUT to MAX BISECTION (equally hard by p. 326).
- 3-COLORING to 2 -COLORING (easier by p. 347).

coNP and Function Problems

coNP

- By definition, coNP is the class of problems whose complement is in NP.
- NP is the class of problems that have succinct certificates (recall Proposition 34 on p. 267).
- coNP is therefore the class of problems that have succinct disqualifications:
- A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
- Only "no" instances have such proofs.

coNP (continued)

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm M such that:
- If $x \in L$, then $M(x)=$ "yes" for all computation paths.
- If $x \notin L$, then $M(x)=$ "no" for some computation path.

coNP (concluded)

- Clearly $\mathrm{P} \subseteq$ coNP.
- It is not known if

$$
\mathrm{P}=\mathrm{NP} \cap \mathrm{coNP} .
$$

- Contrast this with

$$
\mathrm{R}=\mathrm{RE} \cap \mathrm{coRE}
$$

(see Proposition 10 on p. 128).

Some coNP Problems

- VALIDITY \in coNP.
- If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAT COMPLEMENT \in coNP.
- SAT COMPLEMENT is the complement of SAT.
- The disqualification is a truth assignment that satisfies it.
- hamiltonian path complement \in coNP.
- The disqualification is a Hamiltonian path.

Some coNP Problems (concluded)

- OPTIMAL TSP $(D) \in$ coNP.
- optimal TSP (D) asks if the optimal tour has a total distance of B, where B is an input. ${ }^{\text {a }}$
- The disqualification is a tour with a length $<B$.

[^2]
An Alternative Characterization of coNP

Proposition 47 Let $L \subseteq \Sigma^{*}$ be a language. Then $L \in c o N P$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$
L=\{x: \forall y(x, y) \in R\} .
$$

(As on p. 266, we assume $|y| \leq|x|^{k}$ for some k.)

- $\bar{L}=\{x:(x, y) \in \neg R$ for some $y\}$.
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in \mathrm{NP}$ by Proposition 34 (p. 267).
- Hence $L \in$ coNP by definition.

coNP Completeness

Proposition $48 L$ is NP-complete if and only if its complement $\bar{L}=\Sigma^{*}-L$ is coNP-complete.

Proof (\Rightarrow; the \Leftarrow part is symmetric)

- Let \bar{L}^{\prime} be any coNP language.
- Hence $L^{\prime} \in$ NP.
- Let R be the reduction from L^{\prime} to L.
- So $x \in L^{\prime}$ if and only if $R(x) \in L$.
- Equivalently, $x \notin L^{\prime}$ if and only if $R(x) \notin L$ (the law of transposition).

coNP Completeness (concluded)

- So $x \in \bar{L}^{\prime}$ if and only if $R(x) \in \bar{L}$.
- R is a reduction from \bar{L}^{\prime} to \bar{L}.

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
- VALIDITY is coNP-complete.
$-\phi$ is valid if and only if $\neg \phi$ is not satisfiable.
- The reduction from sat complement to validity is hence easy.
- hamiltonian path complement is coNP-complete.

Possible Relations between P, NP, coNP

1. $\mathrm{P}=\mathrm{NP}=\mathrm{coNP}$.
2. $\mathrm{NP}=\mathrm{coNP}$ but $\mathrm{P} \neq \mathrm{NP}$.
3. NP \neq coNP and $\mathrm{P} \neq \mathrm{NP}$.

- This is the current "consensus."

coNP Hardness and NP Hardness ${ }^{\text {a }}$

Proposition 49 If a coNP-hard problem is in NP, then $N P=c o N P$.

- Let $L \in$ NP be coNP-hard.
- Let NTM M decide L.
- For any $L^{\prime} \in \operatorname{coNP}$, there is a reduction R from L^{\prime} to L.
- $L^{\prime} \in$ NP as it is decided by NTM $M(R(x))$.
- Alternatively, NP is closed under complement.
- Hence coNP \subseteq NP.
- The other direction NP \subseteq coNP is symmetric.
${ }^{\text {a Brassard (1979); Selman (1978). }}$

coNP Hardness and NP Hardness (concluded)

Similarly,
Proposition 50 If an NP-hard problem is in coNP, then $N P=c o N P$.

As a result:

- NP-complete problems are very unlikely to be in coNP.
- coNP-complete problems are very unlikely to be in NP.

The Primality Problem

- An integer p is prime if $p>1$ and all positive numbers other than 1 and p itself cannot divide it.
- PRIMES asks if an integer N is a prime number.
- Dividing N by $2,3, \ldots, \sqrt{N}$ is not efficient.
- The length of N is only $\log N$, but $\sqrt{N}=2^{0.5 \log N}$.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- We will focus on efficient "probabilistic" algorithms for PRIMES (used in Mathematica, e.g.).

```
    if n=\mp@subsup{a}{}{b}}\mathrm{ for some }a,b>1\mathrm{ then
    return "composite";
    end if
    for }r=2,3,\ldots,n-1 d
    if gcd(n,r)>1 then
            return "composite";
        end if
        if r is a prime then
            Let q}\mathrm{ be the largest prime factor of r-1;
            if q}\geq4\sqrt{}{r}\operatorname{log}n\mathrm{ and }\mp@subsup{n}{}{(r-1)/q}\not=1\operatorname{mod}r\mathrm{ then
                break; {Exit the for-loop.}
            end if
        end if
    end for {r-1 has a prime factor q}\geq4\sqrt{}{r}\operatorname{log}n.
    for }a=1,2,\ldots,2\sqrt{}{r}\operatorname{log}n\mathrm{ do
        if (x-a\mp@subsup{)}{}{n}\not=(\mp@subsup{x}{}{n}-a)\operatorname{mod}(\mp@subsup{x}{}{r}-1)\mathrm{ in }\mp@subsup{Z}{n}{}[x] then
            return "composite";
        end if
        end for
        return "prime"; {The only place with "prime" output.}
```


The Primality Problem (concluded)

- $\mathrm{NP} \cap$ coNP is the class of problems that have succinct certificates and succinct disqualifications.
- Each "yes" instance has a succinct certificate.
- Each "no" instance has a succinct disqualification.
- No instances have both.
- We will see that primes $\in \mathrm{NP} \cap$ coNP.
- In fact, PRIMES $\in \mathrm{P}$ as mentioned earlier.

Primitive Roots in Finite Fields

Theorem 51 (Lucas and Lehmer (1927)) a A number
$p>1$ is prime if and only if there is a number $1<r<p$ (called the primitive root or generator) such that

1. $r^{p-1}=1 \bmod p$, and
2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

- We will prove the theorem later (see pp. 403ff).

[^3]
Derrick Lehmer (1905-1991)

Pratt's Theorem

Theorem 52 (Pratt (1975)) PRIMES $\in N P \cap \operatorname{coNP}$.

- PRIMES is in coNP because a succinct disqualification is a divisor.
- Suppose p is a prime.
- p 's certificate includes the r in Theorem 51 (p. 393).
- Use recursive doubling to check if $r^{p-1}=1 \bmod p$ in time polynomial in the length of the input, $\log _{2} p$.
$-r, r^{2}, r^{4}, \ldots \bmod p$, a total of $\sim \log _{2} p$ steps.

The Proof (concluded)

- We also need all prime divisors of $p-1: q_{1}, q_{2}, \ldots, q_{k}$.
- Checking $r^{(p-1) / q_{i}} \neq 1 \bmod p$ is also easy.
- Checking $q_{1}, q_{2}, \ldots, q_{k}$ are all the divisors of $p-1$ is easy.
- We still need certificates for the primality of the q_{i} 's.
- The complete certificate is recursive and tree-like:

$$
C(p)=\left(r ; q_{1}, C\left(q_{1}\right), q_{2}, C\left(q_{2}\right), \ldots, q_{k}, C\left(q_{k}\right)\right)
$$

- $C(p)$ can also be checked in polynomial time.
- We next prove that $C(p)$ is succinct.

The Succinctness of the Certificate

Lemma 53 The length of $C(p)$ is at most quadratic at $5 \log _{2}^{2} p$.

- This claim holds when $p=2$ or $p=3$.
- In general, $p-1$ has $k \leq \log _{2} p$ prime divisors $q_{1}=2, q_{2}, \ldots, q_{k}$.
- Reason:

$$
2^{k} \leq \prod_{i=1}^{k} q_{i} \leq p-1 .
$$

- Note also that

$$
\begin{equation*}
\prod_{i=2}^{k} q_{i} \leq \frac{p-1}{2} \tag{3}
\end{equation*}
$$

The Proof (continued)

- $C(p)$ requires:
- 2 parentheses;
- $2 k<2 \log _{2} p$ separators (at most $2 \log _{2} p$ bits);
- r (at most $\log _{2} p$ bits);
- $q_{1}=2$ and its certificate 1 (at most 5 bits);
- q_{2}, \ldots, q_{k} (at most $2 \log _{2} p$ bits);
- $C\left(q_{2}\right), \ldots, C\left(q_{k}\right)$.

The Proof (concluded)

- $C(p)$ is succinct because, by induction,

$$
\begin{aligned}
|C(p)| & \leq 5 \log _{2} p+5+5 \sum_{i=2}^{k} \log _{2}^{2} q_{i} \\
& \leq 5 \log _{2} p+5+5\left(\sum_{i=2}^{k} \log _{2} q_{i}\right)^{2} \\
& \leq 5 \log _{2} p+5+5 \log _{2}^{2} \frac{p-1}{2} \quad \text { by inequality }(3) \\
& <5 \log _{2} p+5+5\left(\log _{2} p-1\right)^{2} \\
& =5 \log _{2}^{2} p+10-5 \log _{2} p \leq 5 \log _{2}^{2} p
\end{aligned}
$$

$$
\text { for } p \geq 4
$$

A Certificate for 23^{a}

- Note that 7 is a primitive root modulo 23 and $23-1=22=2 \times 11$.
- So

$$
C(23)=(7,2, C(2), 11, C(11)) .
$$

- Note that 2 is a primitive root modulo 11 and $11-1=10=2 \times 5$.
- So

$$
C(11)=(2,2, C(2), 5, C(5)) .
$$

[^4]
A Certificate for 23 (concluded)

- Note that 2 is a primitive root modulo 5 and $4=2^{2}$.
- So

$$
C(5)=(2,2, C(2)) .
$$

- In summary,

$$
C(23)=(7,2, C(2), 11,(2,2, C(2), 5,(2,2, C(2))))
$$

- Note that whether the primitive root r is easy to find is irrelevant to the validity of the certificate.
- Note also that there may be multiple choices for r.

Basic Modular Arithmetics ${ }^{\text {a }}$

- Let $m, n \in \mathbb{Z}^{+}$.
- $m \mid n$ means m divides n and m is n 's divisor.
- We call the numbers $0,1, \ldots, n-1$ the residue modulo n.
- The greatest common divisor of m and n is denoted $\operatorname{gcd}(m, n)$.
- The r in Theorem 51 (p. 393) is a primitive root of p.
- We now prove the existence of primitive roots and then Theorem 51.

[^5]
Euler's ${ }^{\text {a }}$ Totient or Phi Function

- Let

$$
\Phi(n)=\{m: 1 \leq m<n, \operatorname{gcd}(m, n)=1\}
$$

be the set of all positive integers less than n that are prime to $n\left(Z_{n}^{*}\right.$ is a more popular notation).
$-\Phi(12)=\{1,5,7,11\}$.

- Define Euler's function of n to be $\phi(n)=|\Phi(n)|$.
- $\phi(p)=p-1$ for prime p, and $\phi(1)=1$ by convention.
- Euler's function is not expected to be easy to compute without knowing n 's factorization.

[^6]

Two Properties of Euler's Function

The inclusion-exclusion principle ${ }^{\mathrm{a}}$ can be used to prove the following.

Lemma $54 \phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.

- If $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{\ell}}$ is the prime factorization of n, then

$$
\phi(n)=n \prod_{i=1}^{\ell}\left(1-\frac{1}{p_{i}}\right)
$$

Corollary $55 \phi(m n)=\phi(m) \phi(n)$ if $\operatorname{gcd}(m, n)=1$.

[^7]
A Key Lemma

Lemma $56 \sum_{m \mid n} \phi(m)=n$.

- Let $\prod_{i=1}^{\ell} p_{i}^{k_{i}}$ be the prime factorization of n and consider

$$
\begin{equation*}
\prod_{i=1}^{\ell}\left[\phi(1)+\phi\left(p_{i}\right)+\cdots+\phi\left(p_{i}^{k_{i}}\right)\right] . \tag{4}
\end{equation*}
$$

- Equation (4) equals n because $\phi\left(p_{i}^{k}\right)=p_{i}^{k}-p_{i}^{k-1}$ by Lemma 54.
- Expand Eq. (4) to yield

$$
\sum_{k_{1}^{\prime} \leq k_{1}, \ldots, k_{\ell}^{\prime} \leq k_{\ell}} \prod_{i=1}^{\ell} \phi\left(p_{i}^{k_{i}^{\prime}}\right) .
$$

The Proof (concluded)

- By Corollary 55 (p. 405),

$$
\prod_{i=1}^{\ell} \phi\left(p_{i}^{k_{i}^{\prime}}\right)=\phi\left(\prod_{i=1}^{\ell} p_{i}^{k_{i}^{\prime}}\right) .
$$

- So Eq. (4) becomes

$$
\sum_{k_{1}^{\prime} \leq k_{1}, \ldots, k_{\ell}^{\prime} \leq k_{\ell}} \phi\left(\prod_{i=1}^{\ell} p_{i}^{k_{i}^{\prime}}\right) .
$$

- Each $\prod_{i=1}^{\ell} p_{i}^{k_{i}^{\prime}}$ is a unique divisor of $n=\prod_{i=1}^{\ell} p_{i}^{k_{i}}$.
- Equation (4) becomes

$$
\sum_{m \mid n} \phi(m) .
$$

The Density Attack for Primes

- It works, but does it work well?
- The ratio of numbers $\leq n$ relatively prime to n (the white area) is $\phi(n) / n$.

The Density Attack for Primes (concluded)

- When $n=p q$, where p and q are distinct primes,

$$
\frac{\phi(n)}{n}=\frac{p q-p-q+1}{p q}>1-\frac{1}{q}-\frac{1}{p} .
$$

- So the ratio of numbers $\leq n$ not relatively prime to n (the grey area) is $<(1 / q)+(1 / p)$.
- The "density attack" has probability $<2 / \sqrt{n}$ of factoring $n=p q$ when $p \sim q=O(\sqrt{n})$.
- The "density attack" to factor $n=p q$ hence takes $\Omega(\sqrt{n})$ steps on average when $p \sim q=O(\sqrt{n})$.
- This running time is exponential: $\Omega\left(2^{0.5 \log _{2} n}\right)$.

The Chinese Remainder Theorem

- Let $n=n_{1} n_{2} \cdots n_{k}$, where n_{i} are pairwise relatively prime.
- For any integers $a_{1}, a_{2}, \ldots, a_{k}$, the set of simultaneous equations

$$
\begin{aligned}
x= & a_{1} \bmod n_{1} \\
x= & a_{2} \bmod n_{2} \\
& \vdots \\
x= & a_{k} \bmod n_{k},
\end{aligned}
$$

has a unique solution modulo n for the unknown x.

Fermat's "Little" Theorem ${ }^{\text {a }}$

Lemma 57 For all $0<a<p, a^{p-1}=1 \bmod p$.

- Consider $a \Phi(p)=\{a m \bmod p: m \in \Phi(p)\}$.
- $a \Phi(p)=\Phi(p)$.
- $a \Phi(p) \subseteq \Phi(p)$ as a remainder must be between 0 and $p-1$.
- Suppose $a m=a m^{\prime} \bmod p$ for $m>m^{\prime}$, where $m, m^{\prime} \in \Phi(p)$.
- That means $a\left(m-m^{\prime}\right)=0 \bmod p$, and p divides a or $m-m^{\prime}$, which is impossible.
${ }^{\text {a }}$ Pierre de Fermat (1601-1665).

The Proof (concluded)

- Multiply all the numbers in $\Phi(p)$ to yield $(p-1)$!.
- Multiply all the numbers in $a \Phi(p)$ to yield $a^{p-1}(p-1)$!.
- As $a \Phi(p)=\Phi(p), a^{p-1}(p-1)!=(p-1)!\bmod p$.
- Finally, $a^{p-1}=1 \bmod p$ because $p \nmid(p-1)$!.

The Fermat-Euler Theorem ${ }^{\text {a }}$

Corollary 58 For all $a \in \Phi(n), a^{\phi(n)}=1 \bmod n$.

- The proof is similar to that of Lemma 57 (p. 411).
- Consider $a \Phi(n)=\{a m \bmod n: m \in \Phi(n)\}$.
- $a \Phi(n)=\Phi(n)$.
$-a \Phi(n) \subseteq \Phi(n)$ as a remainder must be between 0 and $n-1$ and relatively prime to n.
- Suppose $a m=a m^{\prime} \bmod n$ for $m^{\prime}<m<n$, where $m, m^{\prime} \in \Phi(n)$.
- That means $a\left(m-m^{\prime}\right)=0 \bmod n$, and n divides a or $m-m^{\prime}$, which is impossible.
${ }^{\text {a Proof by Mr. Wei-Cheng Cheng (R93922108) on November 24, } 2004 . ~}$

The Proof (concluded) ${ }^{a}$

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a \Phi(n)$ to yield $a^{\phi(n)} \prod_{m \in \Phi(n)} m$.
- As $a \Phi(n)=\Phi(n)$,

$$
\prod_{m \in \Phi(n)} m=a^{\phi(n)}\left(\prod_{m \in \Phi(n)} m\right) \bmod n
$$

- Finally, $a^{\phi(n)}=1 \bmod n$ because $n \times \prod_{m \in \Phi(n)} m$.
${ }^{\text {a Some typographical errors corrected by Mr. Chen, Jung-Ying }}$ (D95723006) on November 18, 2008.

An Example

- As $12=2^{2} \times 3$,

$$
\phi(12)=12 \times\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=4 .
$$

- In fact, $\Phi(12)=\{1,5,7,11\}$.
- For example,

$$
5^{4}=625=1 \bmod 12 .
$$

Exponents

- The exponent of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^{+}$such that

$$
m^{k}=1 \bmod p
$$

- Every residue $s \in \Phi(p)$ has an exponent.
$-1, s, s^{2}, s^{3}, \ldots$ eventually repeats itself modulo p, say $s^{i}=s^{j} \bmod p$, which means $s^{j-i}=1 \bmod p$.
- If the exponent of m is k and $m^{\ell}=1 \bmod p$, then $k \mid \ell$.
- Otherwise, $\ell=q k+a$ for $0<a<k$, and

$$
m^{\ell}=m^{q k+a}=m^{a}=1 \bmod p, \text { a contradiction. }
$$

Lemma 59 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

[^0]: ${ }^{\text {a Papadimitriou (1981). }}$

[^1]: ${ }^{a}$ Thanks to a lively class discussion on October 29, 2003.

[^2]: ${ }^{\text {a }}$ Defined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

[^3]: ${ }^{\text {a François }}$ Edouard Anatole Lucas (1842-1891); Derrick Henry Lehmer (1905-1991).

[^4]: aThanks to a lively discussion on April 24, 2008.

[^5]: ${ }^{\mathrm{a}}$ Carl Friedrich Gauss.

[^6]: ${ }^{\text {a }}$ Leonhard Euler (1707-1783).

[^7]: ${ }^{\text {a }}$ Consult any Discrete Mathematics textbook.

