
bin packing

• We are given N positive integers a1, a2, . . . , aN , an
integer C (the capacity), and an integer B (the number
of bins).

• bin packing asks if these numbers can be partitioned
into B subsets, each of which has total sum at most C.

• Think of packing bags at the check-out counter.

Theorem 46 bin packing is NP-complete.
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integer programming

• integer programming asks whether a system of linear
inequalities with integer coefficients has an integer
solution.

• In contrast, linear programming asks whether a
system of linear inequalities with integer coefficients has
a rational solution.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 371



integer programming Is NP-Completea

• set covering can be expressed by the inequalities
Ax ≥ ~1,

∑n
i=1 xi ≤ B, 0 ≤ xi ≤ 1, where

– xi is one if and only if Si is in the cover.

– A is the matrix whose columns are the bit vectors of
the sets S1, S2, . . ..

– ~1 is the vector of 1s.

– The operations in Ax are standard matrix operations.

• This shows integer programming is NP-hard.

• Many NP-complete problems can be expressed as an
integer programming problem.

aPapadimitriou (1981).
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Christos Papadimitriou
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Easier or Harder?a

• Adding restrictions on the allowable problem instances
will not make a problem harder.

– We are now solving a subset of problem instances.

– The independent set proof (p. 302) and the
knapsack proof (p. 361).

– sat to 2sat (easier by p. 285).

– circuit value to monotone circuit value

(equally hard by p. 257).
aThanks to a lively class discussion on October 29, 2003.
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Easier or Harder? (concluded)

• Adding restrictions on the allowable solutions may make
a problem easier, as hard, or harder.

• It is problem dependent.

– min cut to bisection width (harder by p. 328).

– linear programming to integer programming

(harder by p. 371).

– sat to naesat (equally hard by p. 296) and max

cut to max bisection (equally hard by p. 326).

– 3-coloring to 2-coloring (easier by p. 347).
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coNP and Function Problems
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coNP

• By definition, coNP is the class of problems whose
complement is in NP.

• NP is the class of problems that have succinct
certificates (recall Proposition 34 on p. 267).

• coNP is therefore the class of problems that have
succinct disqualifications:

– A “no” instance of a problem in coNP possesses a
short proof of its being a “no” instance.

– Only “no” instances have such proofs.
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coNP (continued)

• Suppose L is a coNP problem.

• There exists a polynomial-time nondeterministic
algorithm M such that:

– If x ∈ L, then M(x) = “yes” for all computation
paths.

– If x 6∈ L, then M(x) = “no” for some computation
path.
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coNP (concluded)

• Clearly P ⊆ coNP.

• It is not known if

P = NP ∩ coNP.

– Contrast this with

R = RE ∩ coRE

(see Proposition 10 on p. 128).
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Some coNP Problems

• validity ∈ coNP.

– If φ is not valid, it can be disqualified very succinctly:
a truth assignment that does not satisfy it.

• sat complement ∈ coNP.

– sat complement is the complement of sat.

– The disqualification is a truth assignment that
satisfies it.

• hamiltonian path complement ∈ coNP.

– The disqualification is a Hamiltonian path.
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Some coNP Problems (concluded)

• optimal tsp (d) ∈ coNP.

– optimal tsp (d) asks if the optimal tour has a total
distance of B, where B is an input.a

– The disqualification is a tour with a length < B.
aDefined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 382



An Alternative Characterization of coNP

Proposition 47 Let L ⊆ Σ∗ be a language. Then L ∈ coNP
if and only if there is a polynomially decidable and
polynomially balanced relation R such that

L = {x : ∀y (x, y) ∈ R}.

(As on p. 266, we assume | y | ≤ |x |k for some k.)

• L̄ = {x : (x, y) ∈ ¬R for some y}.
• Because ¬R remains polynomially balanced, L̄ ∈ NP by

Proposition 34 (p. 267).

• Hence L ∈ coNP by definition.
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coNP Completeness

Proposition 48 L is NP-complete if and only if its
complement L̄ = Σ∗ − L is coNP-complete.

Proof (⇒; the ⇐ part is symmetric)

• Let L̄′ be any coNP language.

• Hence L′ ∈ NP.

• Let R be the reduction from L′ to L.

• So x ∈ L′ if and only if R(x) ∈ L.

• Equivalently, x 6∈ L′ if and only if R(x) 6∈ L (the law of
transposition).
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coNP Completeness (concluded)

• So x ∈ L̄′ if and only if R(x) ∈ L̄.

• R is a reduction from L̄′ to L̄.
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Some coNP-Complete Problems

• sat complement is coNP-complete.

• validity is coNP-complete.

– φ is valid if and only if ¬φ is not satisfiable.

– The reduction from sat complement to validity

is hence easy.

• hamiltonian path complement is coNP-complete.
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Possible Relations between P, NP, coNP

1. P = NP = coNP.

2. NP = coNP but P 6= NP.

3. NP 6= coNP and P 6= NP.

• This is the current “consensus.”
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coNP Hardness and NP Hardnessa

Proposition 49 If a coNP-hard problem is in NP, then
NP = coNP.

• Let L ∈ NP be coNP-hard.

• Let NTM M decide L.

• For any L′ ∈ coNP, there is a reduction R from L′ to L.

• L′ ∈ NP as it is decided by NTM M(R(x)).

– Alternatively, NP is closed under complement.

• Hence coNP ⊆ NP.

• The other direction NP ⊆ coNP is symmetric.
aBrassard (1979); Selman (1978).
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coNP Hardness and NP Hardness (concluded)

Similarly,

Proposition 50 If an NP-hard problem is in coNP, then
NP = coNP.

As a result:

• NP-complete problems are very unlikely to be in coNP.

• coNP-complete problems are very unlikely to be in NP.
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The Primality Problem

• An integer p is prime if p > 1 and all positive numbers
other than 1 and p itself cannot divide it.

• primes asks if an integer N is a prime number.

• Dividing N by 2, 3, . . . ,
√

N is not efficient.

– The length of N is only log N , but
√

N = 20.5 log N .

• A polynomial-time algorithm for primes was not found
until 2002 by Agrawal, Kayal, and Saxena!

• We will focus on efficient “probabilistic” algorithms for
primes (used in Mathematica, e.g.).
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1: if n = ab for some a, b > 1 then

2: return “composite”;

3: end if

4: for r = 2, 3, . . . , n− 1 do

5: if gcd(n, r) > 1 then

6: return “composite”;

7: end if

8: if r is a prime then

9: Let q be the largest prime factor of r − 1;

10: if q ≥ 4
√

r log n and n(r−1)/q 6= 1 mod r then

11: break; {Exit the for-loop.}
12: end if

13: end if

14: end for{r − 1 has a prime factor q ≥ 4
√

r log n.}
15: for a = 1, 2, . . . , 2

√
r log n do

16: if (x− a)n 6= (xn − a) mod (xr − 1) in Zn[ x ] then

17: return “composite”;

18: end if

19: end for

20: return “prime”; {The only place with “prime” output.}
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The Primality Problem (concluded)

• NP ∩ coNP is the class of problems that have succinct
certificates and succinct disqualifications.

– Each “yes” instance has a succinct certificate.

– Each “no” instance has a succinct disqualification.

– No instances have both.

• We will see that primes ∈ NP ∩ coNP.

– In fact, primes ∈ P as mentioned earlier.
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Primitive Roots in Finite Fields

Theorem 51 (Lucas and Lehmer (1927)) a A number
p > 1 is prime if and only if there is a number 1 < r < p

(called the primitive root or generator) such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q 6= 1 mod p for all prime divisors q of p− 1.

• We will prove the theorem later (see pp. 403ff).

aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry

Lehmer (1905–1991).
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Derrick Lehmer (1905–1991)
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Pratt’s Theorem

Theorem 52 (Pratt (1975)) primes ∈ NP ∩ coNP.

• primes is in coNP because a succinct disqualification is
a divisor.

• Suppose p is a prime.

• p’s certificate includes the r in Theorem 51 (p. 393).

• Use recursive doubling to check if rp−1 = 1 mod p in
time polynomial in the length of the input, log2 p.

– r, r2, r4, . . . mod p, a total of ∼ log2 p steps.
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The Proof (concluded)

• We also need all prime divisors of p− 1: q1, q2, . . . , qk.

• Checking r(p−1)/qi 6= 1 mod p is also easy.

• Checking q1, q2, . . . , qk are all the divisors of p− 1 is easy.

• We still need certificates for the primality of the qi’s.

• The complete certificate is recursive and tree-like:

C(p) = (r; q1, C(q1), q2, C(q2), . . . , qk, C(qk)).

• C(p) can also be checked in polynomial time.

• We next prove that C(p) is succinct.
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The Succinctness of the Certificate

Lemma 53 The length of C(p) is at most quadratic at
5 log2

2 p.

• This claim holds when p = 2 or p = 3.

• In general, p− 1 has k ≤ log2 p prime divisors
q1 = 2, q2, . . . , qk.

– Reason:

2k ≤
k∏

i=1

qi ≤ p− 1.

• Note also that
k∏

i=2

qi ≤ p− 1
2

. (3)

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 397



The Proof (continued)

• C(p) requires:

– 2 parentheses;

– 2k < 2 log2 p separators (at most 2 log2 p bits);

– r (at most log2 p bits);

– q1 = 2 and its certificate 1 (at most 5 bits);

– q2, . . . , qk (at most 2 log2 p bits);

– C(q2), . . . , C(qk).
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The Proof (concluded)

• C(p) is succinct because, by induction,

|C(p)| ≤ 5 log2 p + 5 + 5
k∑

i=2

log2
2 qi

≤ 5 log2 p + 5 + 5

(
k∑

i=2

log2 qi

)2

≤ 5 log2 p + 5 + 5 log2
2

p− 1
2

by inequality (3)

< 5 log2 p + 5 + 5(log2 p− 1)2

= 5 log2
2 p + 10− 5 log2 p ≤ 5 log2

2 p

for p ≥ 4.
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A Certificate for 23a

• Note that 7 is a primitive root modulo 23 and
23− 1 = 22 = 2× 11.

• So
C(23) = (7, 2, C(2), 11, C(11)).

• Note that 2 is a primitive root modulo 11 and
11− 1 = 10 = 2× 5.

• So
C(11) = (2, 2, C(2), 5, C(5)).

aThanks to a lively discussion on April 24, 2008.
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A Certificate for 23 (concluded)

• Note that 2 is a primitive root modulo 5 and 4 = 22.

• So
C(5) = (2, 2, C(2)).

• In summary,

C(23) = (7, 2, C(2), 11, (2, 2, C(2), 5, (2, 2, C(2)))).

• Note that whether the primitive root r is easy to find is
irrelevant to the validity of the certificate.

• Note also that there may be multiple choices for r.
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Basic Modular Arithmeticsa

• Let m,n ∈ Z+.

• m|n means m divides n and m is n’s divisor.

• We call the numbers 0, 1, . . . , n− 1 the residue modulo
n.

• The greatest common divisor of m and n is denoted
gcd(m,n).

• The r in Theorem 51 (p. 393) is a primitive root of p.

• We now prove the existence of primitive roots and then
Theorem 51.

aCarl Friedrich Gauss.
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Euler’sa Totient or Phi Function

• Let
Φ(n) = {m : 1 ≤ m < n, gcd(m,n) = 1}

be the set of all positive integers less than n that are
prime to n (Z∗n is a more popular notation).

– Φ(12) = {1, 5, 7, 11}.
• Define Euler’s function of n to be φ(n) = |Φ(n)|.
• φ(p) = p− 1 for prime p, and φ(1) = 1 by convention.

• Euler’s function is not expected to be easy to compute
without knowing n’s factorization.

aLeonhard Euler (1707–1783).
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Two Properties of Euler’s Function

The inclusion-exclusion principlea can be used to prove the
following.

Lemma 54 φ(n) = n
∏

p|n(1− 1
p ).

• If n = pe1
1 pe2

2 · · · pe`
t is the prime factorization of n, then

φ(n) = n
∏̀

i=1

(
1− 1

pi

)
.

Corollary 55 φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.
aConsult any Discrete Mathematics textbook.
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A Key Lemma

Lemma 56
∑

m|n φ(m) = n.

• Let
∏`

i=1 pki
i be the prime factorization of n and consider

∏̀

i=1

[ φ(1) + φ(pi) + · · ·+ φ(pki
i ) ]. (4)

• Equation (4) equals n because φ(pk
i ) = pk

i − pk−1
i by

Lemma 54.

• Expand Eq. (4) to yield

∑

k′1≤k1,...,k′`≤k`

∏̀

i=1

φ(pk′i
i ).
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The Proof (concluded)

• By Corollary 55 (p. 405),

∏̀

i=1

φ(pk′i
i ) = φ

(∏̀

i=1

p
k′i
i

)
.

• So Eq. (4) becomes

∑

k′1≤k1,...,k′`≤k`

φ

(∏̀

i=1

p
k′i
i

)
.

• Each
∏`

i=1 p
k′i
i is a unique divisor of n =

∏`
i=1 pki

i .

• Equation (4) becomes
∑

m|n
φ(m).
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The Density Attack for primes

Witnesses to
compositeness

of n

All numbers < n

• It works, but does it work well?

• The ratio of numbers ≤ n relatively prime to n (the
white area) is φ(n)/n.
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The Density Attack for primes (concluded)

• When n = pq, where p and q are distinct primes,

φ(n)
n

=
pq − p− q + 1

pq
> 1− 1

q
− 1

p
.

• So the ratio of numbers ≤ n not relatively prime to n

(the grey area) is < (1/q) + (1/p).

– The “density attack” has probability < 2/
√

n of
factoring n = pq when p ∼ q = O(

√
n ).

– The “density attack” to factor n = pq hence takes
Ω(
√

n) steps on average when p ∼ q = O(
√

n ).

– This running time is exponential: Ω(20.5 log2 n).
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The Chinese Remainder Theorem

• Let n = n1n2 · · ·nk, where ni are pairwise relatively
prime.

• For any integers a1, a2, . . . , ak, the set of simultaneous
equations

x = a1 mod n1,

x = a2 mod n2,

...

x = ak mod nk,

has a unique solution modulo n for the unknown x.
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Fermat’s “Little” Theorema

Lemma 57 For all 0 < a < p, ap−1 = 1 mod p.

• Consider aΦ(p) = {am mod p : m ∈ Φ(p)}.
• aΦ(p) = Φ(p).

– aΦ(p) ⊆ Φ(p) as a remainder must be between 0 and
p− 1.

– Suppose am = am′ mod p for m > m′, where
m,m′ ∈ Φ(p).

– That means a(m−m′) = 0 mod p, and p divides a or
m−m′, which is impossible.

aPierre de Fermat (1601–1665).
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The Proof (concluded)

• Multiply all the numbers in Φ(p) to yield (p− 1)!.

• Multiply all the numbers in aΦ(p) to yield ap−1(p− 1)!.

• As aΦ(p) = Φ(p), ap−1(p− 1)! = (p− 1)! mod p.

• Finally, ap−1 = 1 mod p because p 6 |(p− 1)!.
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The Fermat-Euler Theorema

Corollary 58 For all a ∈ Φ(n), aφ(n) = 1 mod n.

• The proof is similar to that of Lemma 57 (p. 411).

• Consider aΦ(n) = {am mod n : m ∈ Φ(n)}.
• aΦ(n) = Φ(n).

– aΦ(n) ⊆ Φ(n) as a remainder must be between 0 and
n− 1 and relatively prime to n.

– Suppose am = am′ mod n for m′ < m < n, where
m,m′ ∈ Φ(n).

– That means a(m−m′) = 0 mod n, and n divides a or
m−m′, which is impossible.

aProof by Mr. Wei-Cheng Cheng (R93922108) on November 24, 2004.
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The Proof (concluded)a

• Multiply all the numbers in Φ(n) to yield
∏

m∈Φ(n) m.

• Multiply all the numbers in aΦ(n) to yield
aφ(n)

∏
m∈Φ(n) m.

• As aΦ(n) = Φ(n),

∏

m∈Φ(n)

m = aφ(n)


 ∏

m∈Φ(n)

m


 mod n.

• Finally, aφ(n) = 1 mod n because n 6 | ∏
m∈Φ(n) m.

aSome typographical errors corrected by Mr. Chen, Jung-Ying

(D95723006) on November 18, 2008.
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An Example

• As 12 = 22 × 3,

φ(12) = 12×
(

1− 1
2

)(
1− 1

3

)
= 4.

• In fact, Φ(12) = {1, 5, 7, 11}.
• For example,

54 = 625 = 1 mod 12.
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Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself modulo p, say
si = sj mod p, which means sj−i = 1 mod p.

• If the exponent of m is k and m` = 1 mod p, then k|`.
– Otherwise, ` = qk + a for 0 < a < k, and

m` = mqk+a = ma = 1 mod p, a contradiction.

Lemma 59 Any nonzero polynomial of degree k has at most
k distinct roots modulo p.
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