Theory of Computation

Solutions to Homework 2

Problem 1. We call a boolean function $f:\{0,1\}^{k} \rightarrow\{0,1\}$ symmetric if $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ depends only on $\sum_{i=1}^{k} x_{i}$. How many symmetric boolean functions of k variables are there?

Solution. 2^{k+1}.
Problem 2. It is known that the language

$$
\{M: M \text { halts on all inputs }\}
$$

is undecidable. Prove or disprove that the following restricted language
$L_{1000}=\{M: M$ halts on all inputs and M is at most 1000 bits long $\}$
is undecidable.
Proof. There exists a TM that keeps all the $M \in L$ in its states (which is finite in number) and tests if the input is one of them. Therefore, L_{1000} is decidable.

