Remarks

- We had proved that max cut is NP-complete for multigraphs.
- How about proving the same thing for simple graphs? ${ }^{\text {a }}$
- For 4 sat, how do you modify the proof? ${ }^{\text {b }}$
- All NP-complete problems are mutually reducible by definition as an NP-complete problem is in NP. ${ }^{\text {c }}$
- So they are equally hard in this sense. ${ }^{\text {d }}$

[^0]
MAX BISECTION

- max cut becomes max bisection if we require that $|S|=|V-S|$.
- It has many applications, especially in VLSI layout.

max bisection Is NP-Complete

- We shall reduce the more general max cut to max BISECTION.
- Add $|V|=n$ isolated nodes to G to yield G^{\prime}.
- G^{\prime} has $2 n$ nodes.
- As the new nodes have no edges, moving them around contributes nothing to the cut.

The Proof (concluded)

- Every cut $(S, V-S)$ of $G=(V, E)$ can be made into a bisection by appropriately allocating the new nodes between S and $V-S$.
- Hence each cut of G can be made a cut of G^{\prime} of the same size, and vice versa.

BISECTION WIDTH

- BISECTION WIDTH is like max bisection except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).
- Unlike min cut, BISECTION WIDTH remains NP-complete.
- A graph $G=(V, E)$, where $|V|=2 n$, has a bisection of size K if and only if the complement of G has a bisection of size $n^{2}-K$.
- So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^{2}-K$.

HAMILTONIAN PATH Is NP-Complete ${ }^{\text {a }}$

Theorem 42 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

- We will reduce 3sat to hamiltonian path.
- We are given a boolean expression $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in CNF.
- The clauses are $C_{1}, C_{2}, \ldots, C_{m}$, each containing 3 literals.
- Need to construct a graph $R(\phi)$ that has a Hamiltonian path if and only if $\phi \in 3$ sat.

[^1]
The Proof (continued)

- Each boolean variable must be either true or false ("choice").
- We need to impose that all occurrences of x be assigned the same truth value ("consistency").
- We must also make sure that all occurrences of $\neg x$ be assigned the opposite truth value ("consistency").
- Finally, the clauses provide the constraints that must be satisfied in 3SAT ("constraint").

The Proof (continued)

- Both the choice gadgets and the consistency gadgets will be used to build $R(\phi)$.
- The choice gadget makes sure that a Hamiltonian path must take either the left parallel edge (true) or the right parallel edge (false).

The Proof (continued)

- A Hamiltonian path that does not start or end at a node in a consistency gadget must travel it in one of two ways (drawn in green and red).
- Solid nodes are the only ones that connect to other gadgets.

The Proof (continued)

- Clauses will be turned into triangles.
- The choice and consistency gadgets make sure that each side of the triangle is traversed by the Hamiltonian path if and only if the corresponding literal is false.
- This implies that at least one literal has to be true if there is a Hamiltonian path.
- If all three literals are false, then all edges of the triangle will be traversed, which is impossible (why?).

The Proof (continued)

- Graph $R(\phi)$ has n choice gadgets, one for each variable.
- They are connected in series.
- Graph $R(\phi)$ has m triangles, one for each clause.
- Each edge of the triangle corresponds to a literal in the clause.
- An x_{i} edge is connected with a consistency gadget to the true edge of the choice gadget for x_{i}.
* So the x_{i} edge is traversed if the true edge of the choice gadget is not.
- A $\neg x_{i}$ edge is connected with a consistency gadget to the false edge of the choice gadget for x_{i}.

The Proof (continued)

- All $3 m$ nodes of the triangles plus the last node of the chain of choice gadgets and a new node 3 are connected by a complete graph (drawn in green).
- A single node 2 is connected to node 3 .
- This finishes the construction of $R(\phi)$.

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

The Proof (continued)

- Suppose that a Hamiltonian path exists.
- It must start at node 1 and end at node 2 .
- One of each variable's 2 parallel edges in the choice gadgets must be traversed.
- This defines a truth assignment T.
- Then the path traverses the triangles.

The Proof (continued)

- An edge of a triangle is traversed if and only if the corresponding literal is false.
- But not all sides of a triangle can be traversed.
- Hence $T \models \phi$.

The Proof (concluded)

- Now suppose there is a truth assignment T that satisfies ϕ.
- We next find a Hamiltonian path of $R(\phi)$.
- The path starts at node 1 .
- It traverses the edges of the choice gadgets whose corresponding literal is true under T.
- The rest of the graph is connected by a complete graph.
- We now traverse it (some of the green nodes on p. 341).

TSP (D) Is NP-Complete

Corollary 43 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Create a weighted complete graph G^{\prime} with the same nodes as from G follows.
- Set $d_{i j}=1$ if $[i, j] \in G$ and $d_{i j}=2$ if $[i, j] \notin G$.
- Set the budget $B=n+1$.
- Suppose G has no Hamiltonian paths.
- Then every tour on G^{\prime} must contain at least two edges with weight 2 .
- Otherwise, by removing up to one edge with weight 2, a Hamiltonian path for G obtains, a contradiction.

TSP (D) Is NP-Complete (concluded)

- The total cost is then at least $(n-2)+2 \cdot 2=n+2>B$.
- On the other hand, suppose G has Hamiltonian paths.
- Then there is a tour on G^{\prime} containing at most one edge with weight 2 .
- The total cost is then at most $(n-1)+2=n+1=B$.
- We conclude that there is a tour of length B or less on G^{\prime} if and only if G has a Hamiltonian path.

Graph Coloring

- k-Coloring: Can the nodes of a graph be colored with $\leq k$ colors such that no two adjacent nodes have the same color?
- 2-coloring is in P (why?).
- But 3 -coloring is NP-complete (see next page).
- k-Coloring is NP-complete for $k \geq 3$ (why?).
- Exact- k-Coloring asks if the nodes of a graph can be colored using exactly k colors.
- It remains NP-complete for $k \geq 3$ (why?).

3-Coloring Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to 3-Coloring.
- We are given a set of clauses $C_{1}, C_{2}, \ldots, C_{m}$ each with 3 literals.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- We shall construct a graph G such that it can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

[^2]
The Proof (continued)

- Every variable x_{i} is involved in a triangle $\left[a, x_{i}, \neg x_{i}\right]$ with a common node a.
- Each clause $C_{i}=\left(c_{i 1} \vee c_{i 2} \vee c_{i 3}\right)$ is also represented by a triangle

$$
\left[c_{i 1}, c_{i 2}, c_{i 3}\right] .
$$

- Node $c_{i j}$ with the same label as one in some triangle [$a, x_{k}, \neg x_{k}$] represent distinct nodes.
- There is an edge between $c_{i j}$ and the node that represents the j th literal of C_{i}.
- Alternative proof: there is an edge between $\neg c_{i j}$ and the node that represents the j th literal of $C_{i} .{ }^{\text {a }}$

[^3]Construction for $\cdots \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \cdots$

The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_{i} and $\neg x_{i}$ must take the color 0 and the other 1.

The Proof (continued)

- Treat 1 as true and 0 as false. ${ }^{\text {a }}$
- We were dealing only with those triangles with the a node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0 , the clauses are NAE-satisfied.

[^4]
The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2 .
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- We were dealing only with those triangles with the a node, not the clause triangles.

The Proof (concluded)

- For each clause triangle:
- Pick any two literals with opposite truth values.
- Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
- Color the remaining node with color 2.
- The coloring is legitimate.
- If literal w of a clause triangle has color 2, then its color will never be an issue.
- If literal w of a clause triangle has color 1 , then it must be connected up to literal w with color 0 .
- If literal w of a clause triangle has color 0 , then it must be connected up to literal w with color 1 .

Algorithms for 3-coloring and the Chromatic Number $\chi(G)$

- Assume G is 3 -colorable.
- There is an algorithm to find a 3 -coloring in time $O\left(3^{n / 3}\right)=1.4422^{n} .{ }^{\text {a }}$
- It has been improved to $O\left(1.3289^{n}\right)$. b
- There is an algorithm to find $\chi(G)$ in time $O\left((4 / 3)^{n / 3}\right)=2.4422^{n}$. ${ }^{\text {c }}$
- It can be improved to

$$
O\left(\left(4 / 3+3^{4 / 3} / 4\right)^{n}\right)=O\left(2.4150^{n}\right) .{ }^{\mathrm{d}}
$$

[^5]
TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- tripartite matching asks if there is a set of n triples in T, none of which has a component in common.
- Each element in B is matched to a different element in G and different element in H.

Theorem 44 (Karp (1972)) tripartite matching is NP-complete.

Related Problems

- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of subsets of a finite set U and a budget B.
- SEt covering asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- Assume $|U|=3 m$ for some $m \in \mathbb{N}$ and $\left|S_{i}\right|=3$ for all i.
- EXACT COVER By 3 -SETs asks if there are m sets in F that are disjoint and have U as their union.

Related Problems (concluded)

Corollary 45 set covering, set packing, and exact cover by 3-sets are all NP-complete.

The knapsack Problem

- There is a set of n items.
- Item i has value $v_{i} \in \mathbb{Z}^{+}$and weight $w_{i} \in \mathbb{Z}^{+}$.
- We are given $K \in \mathbb{Z}^{+}$and $W \in \mathbb{Z}^{+}$.
- knapsack asks if there exists a subset $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i} \geq K$.
- We want to achieve the maximum satisfaction within the budget.

KNAPSACK Is NP-Complete ${ }^{\text {a }}$

- knapsack \in NP: Guess an S and verify the constraints.
- We assume $v_{i}=w_{i}$ for all i and $K=W$.
- KNAPSACK now asks if a subset of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ adds up to exactly K.
- Picture yourself as a radio DJ.
- Or a person trying to control the calories intake.
- We shall reduce exact cover by 3-SEts to knapsack.
${ }^{a}$ Karp (1972).

The Proof (continued)

- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of size-3 subsets of $U=\{1,2, \ldots, 3 m\}$.
- EXACT COVER BY 3-SETS asks if there are m disjoint sets in F that cover the set U.
- Think of a set as a bit vector in $\{0,1\}^{3 m}$.
- 001100010 means the set $\{3,4,8\}$, and 110010000 means the set $\{1,2,5\}$.
- Our goal is $\overbrace{11 \cdots 1}^{3 m}$.

The Proof (continued)

- A bit vector can also be considered as a binary number.
- Set union resembles addition.
$-001100010+110010000=111110010$, which denotes the set $\{1,2,3,4,5,8\}$, as desired.
- Trouble occurs when there is carry.
$-001100010+001110000=010010010$, which denotes the set $\{2,5,8\}$, not the desired $\{3,4,5,8\}$.

The Proof (continued)

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.
$-001100010+001110000+101100000+000001101=$ 111111111.
- But this "solution" $\{1,3,4,5,6,7,8,9\}$ does not correspond to an exact cover.
- And it uses 4 sets instead of the required $m=3$. ${ }^{\text {a }}$
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are n vectors in total, we change the base from 2 to $n+1$.

[^6]
The Proof (continued)

- Set v_{i} to be the $(n+1)$-ary number corresponding to the bit vector encoding S_{i}.
- Now in base $n+1$, if there is a set S such that $3 m$
$\sum_{v_{i} \in S} v_{i}=\overbrace{11 \cdots 1}^{3 m}$, then every bit position must be contributed by exactly one v_{i} and $|S|=m$.
- Finally, set

$$
K=\sum_{j=0}^{3 m-1}(n+1)^{j}=\overbrace{11 \cdots 1}^{3 m} \quad(\text { base } n+1)
$$

The Proof (continued)

- Suppose F admits an exact cover, say $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$.
- Then picking $S=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ clearly results in

$$
v_{1}+v_{2}+\cdots+v_{m}=\overbrace{11 \cdots 1}^{3 m} .
$$

- It is important to note that the meaning of addition $(+)$ is independent of the base. ${ }^{\text {a }}$
- It is just regular addition.
- But a S_{i} may give rise to different v_{i} 's under different bases.
${ }^{\text {a }}$ Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.

The Proof (concluded)

- On the other hand, suppose there exists an S such that $3 m$ $\sum_{v_{i} \in S} v_{i}=\overbrace{11 \cdots 1}$ in base $n+1$.
- The no-carry property implies that $|S|=m$ and $\left\{S_{i}: v_{i} \in S\right\}$ is an exact cover.

An Example

- Let $m=3, U=\{1,2,3,4,5,6,7,8,9\}$, and

$$
\begin{aligned}
& S_{1}=\{1,3,4\}, \\
& S_{2}=\{2,3,4\}, \\
& S_{3}=\{2,5,6\}, \\
& S_{4}=\{6,7,8\}, \\
& S_{5}=\{7,8,9\} .
\end{aligned}
$$

- Note that $n=5$, as there are $5 S_{i}$'s.

An Example (concluded)

- Our reduction produces

$$
\begin{aligned}
K & =\sum_{j=0}^{3 \times 3-1} 6^{j}=\overbrace{11 \cdots 1}^{3 \times 3}(\text { base } 6)=2015539 \\
v_{1} & =101100000=1734048 \\
v_{2} & =011100000=334368 \\
v_{3} & =010011000=281448 \\
v_{4} & =000001110=258 \\
v_{5} & =000000111=43
\end{aligned}
$$

- Note $v_{1}+v_{3}+v_{5}=K$.
- Indeed, $S_{1} \cup S_{3} \cup S_{5}=\{1,2,3,4,5,6,7,8,9\}$, an exact cover by 3 -sets.

BIN PACKING

- We are given N positive integers $a_{1}, a_{2}, \ldots, a_{N}$, an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 46 BIN PACKING is NP-complete.

INTEGER PROGRAMMING

- INTEGER PROGRAMMING asks whether a system of linear inequalities with integer coefficients has an integer solution.
- LINEAR PROGRAMMING asks whether a system of linear inequalities with integer coefficients has a rational solution.

INTEGER PROGRAMming Is NP-Complete ${ }^{\text {a }}$

- Set covering can be expressed by the inequalities $A x \geq \overrightarrow{1}, \sum_{i=1}^{n} x_{i} \leq B, 0 \leq x_{i} \leq 1$, where
- x_{i} is one if and only if S_{i} is in the cover.
- A is the matrix whose columns are the bit vectors of the sets S_{1}, S_{2}, \ldots.
$-\overrightarrow{1}$ is the vector of 1 s .
- This shows integer programming is NP-hard.
- Many NP-complete problems can be expressed as an integer programming problem.

[^7]
Christos Papadimitriou

Easier or Harder? ${ }^{\text {a }}$

- Adding restrictions on the allowable problem instances will not make a problem harder.
- We are now solving a subset of problem instances.
- The independent set proof (p. 302) and the KNAPSACK proof (p. 361).
- SAT to 2SAT (easier by p. 285).
- CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (equally hard by p. 257).

[^8]
Easier or Harder? (concluded)

- Adding restrictions on the allowable solutions may make a problem easier, as hard, or harder.
- It is problem dependent.
- MIN CUT to BISECTION WIDTH (harder by p. 328).
- LINEAR PROGRAMMING to INTEGER PROGRAMMING (harder by p. 371).
- SAT to NAESAT (equally hard by p. 296) and mAx CUT to MAX BISECTION (equally hard by p. 326).
- 3-COLORING to 2 -COLORING (easier by p. 347).

coNP and Function Problems

coNP

- By definition, coNP is the class of problems whose complement is in NP.
- NP is the class of problems that have succinct certificates (recall Proposition 34 on p. 267).
- coNP is therefore the class of problems that have succinct disqualifications:
- A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
- Only "no" instances have such proofs.

coNP (continued)

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm M such that:
- If $x \in L$, then $M(x)=$ "yes" for all computation paths.
- If $x \notin L$, then $M(x)=$ "no" for some computation path.

coNP (concluded)

- Clearly $\mathrm{P} \subseteq$ coNP.
- It is not known if

$$
\mathrm{P}=\mathrm{NP} \cap \mathrm{coNP} .
$$

- Contrast this with

$$
\mathrm{R}=\mathrm{RE} \cap \mathrm{coRE}
$$

(see Proposition 10 on p. 128).

Some coNP Problems

- VALIDITY \in coNP.
- If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAT COMPLEMENT \in coNP.
- The disqualification is a truth assignment that satisfies it.
- HAMILTONIAN PATH COMPLEMENT \in coNP.
- The disqualification is a Hamiltonian path.
- OPTIMAL TSP $(D) \in$ coNP. ${ }^{a}$
- The disqualification is a tour with a length $<B$.

[^9]
An Alternative Characterization of coNP

Proposition 47 Let $L \subseteq \Sigma^{*}$ be a language. Then $L \in c o N P$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$
L=\{x: \forall y(x, y) \in R\} .
$$

(As on p. 266, we assume $|y| \leq|x|^{k}$ for some k.)

- $\bar{L}=\{x:(x, y) \in \neg R$ for some $y\}$.
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in \mathrm{NP}$ by Proposition 34 (p. 267).
- Hence $L \in$ coNP by definition.

coNP Completeness

Proposition $48 L$ is NP-complete if and only if its complement $\bar{L}=\Sigma^{*}-L$ is coNP-complete.

Proof (\Rightarrow; the \Leftarrow part is symmetric)

- Let \bar{L}^{\prime} be any coNP language.
- Hence $L^{\prime} \in \mathrm{NP}$.
- Let R be the reduction from L^{\prime} to L.
- So $x \in L^{\prime}$ if and only if $R(x) \in L$.
- So $x \in \bar{L}^{\prime}$ if and only if $R(x) \in \bar{L}$.
- R is a reduction from \bar{L}^{\prime} to \bar{L}.

Some coNP-Complete Problems

- SAt COMPLEMENT is coNP-complete.
- SAT COMPLEMENT is the complement of SAT.
- VALIDITY is coNP-complete.
$-\phi$ is valid if and only if $\neg \phi$ is not satisfiable.
- The reduction from sat complement to validity is hence easy.
- hamiltonian path complement is coNP-complete.

[^0]: ${ }^{\text {a }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
 ${ }^{\mathrm{b}}$ Contributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
 ${ }^{\mathrm{c}}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
 ${ }^{\text {d }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

[^1]: ${ }^{a}$ Karp (1972).

[^2]: ${ }^{a}$ Karp (1972).

[^3]: ${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

[^4]: ${ }^{\text {a }}$ The opposite also works.

[^5]: ${ }^{\text {a }}$ Lawler (1976).
 ${ }^{\mathrm{b}}$ Beigel and Eppstein (2000).
 ${ }^{c}$ Lawler (1976).
 ${ }^{\mathrm{d}}$ Eppstein (2003).

[^6]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 20, 2002.

[^7]: ${ }^{\text {a }}$ Papadimitriou (1981).

[^8]: ${ }^{a}$ Thanks to a lively class discussion on October 29, 2003.

[^9]: ${ }^{\text {a Asked by Mr. Che-Wei Chang (R95922093) on September 27, } 2006 . ~}$

