Reductions and Completeness

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input $R(x)$ of A .
- The answer to x for B is the same as the answer to $R(x)$ for A .
- There must be restrictions on the complexity of computing R.
- Otherwise, $R(x)$ might as well solve B .
* E.g., $R(x)=$ "yes" if and only if $x \in \mathrm{~B}$!

Degrees of Difficulty (concluded)

- We say problem A is at least as hard as problem B if B reduces to A.
- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work (R), then A must be at least as hard.
- If A were easy, it combined with R (which is also easy) would make B easy, too. ${ }^{\text {a }}$
${ }^{a}$ Thanks to a lively class discussion on October 13, 2009.

Reduction

Solving problem B by calling the algorithm for problem once and without further processing its answer.

Comments ${ }^{\text {a }}$

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B.
- The output $R(x)$ is an instance of A.
- $R(x)$ may not span all possible instances of $A .{ }^{\mathrm{b}}$
- So some instances of A may never appear in the range of the reduction R.
${ }^{\text {a Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29, }}$ 2003.
${ }^{\mathrm{b}} R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

Reduction between Languages

- Language L_{1} is reducible to L_{2} if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_{1}$ if and only if $R(x) \in L_{2}$.
- R is said to be a (Karp) reduction from L_{1} to L_{2}.
- Note that by Theorem 22 (p. 189), R runs in polynomial time.
- Suppose R is a reduction from L_{1} to L_{2}.
- Then solving " $R(x) \in L_{2}$ " is an algorithm for solving " $x \in L_{1}$."

A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $\mathrm{B} \in \operatorname{TIME}\left(n^{99}\right)$ may be "easier" than a language $\mathrm{A} \in \operatorname{TIME}\left(n^{3}\right)$.
- This happens when B is reducible to A.
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{99} steps be reducible to a problem solvable in n^{3} steps?

A Paradox? (concluded)

- The so-called contradiction does not hold.
- When we solve the problem " $x \in \mathrm{~B}$?" via " $R(x) \in \mathrm{A}$?", we must consider the time spent by $R(x)$ and its length | $R(x) \mid$.
- If $|R(x)|=\Omega\left(n^{33}\right)$, then answering " $R(x) \in \mathrm{A}$?" takes $\Omega\left(\left(n^{33}\right)^{3}\right)=\Omega\left(n^{99}\right)$ steps, which is fine.
- Suppose, on the other hand, that $|R(x)|=o\left(n^{33}\right)$.
- Then $R(x)$ must run in time $\Omega\left(n^{99}\right)$ to make the overall time for answering " $R(x) \in \mathrm{A}$?" take $\Omega\left(n^{99}\right)$ steps.
- In either case, the contradiction disappears.

HAMILTONIAN PATH

- A Hamiltonian path of a graph is a path that visits every node of the graph exactly once.
- Suppose graph G has n nodes: $1,2, \ldots, n$.
- A Hamiltonian path can be expressed as a permutation π of $\{1,2, \ldots, n\}$ such that $-\pi(i)=j$ means the i th position is occupied by node j. $-(\pi(i), \pi(i+1)) \in G$ for $i=1,2, \ldots, n-1$.
- hamiltonian path asks if a graph has a Hamiltonian path.

Reduction of hamiltonian path to Sat

- Given a graph G, we shall construct a CNF $R(G)$ such that $R(G)$ is satisfiable iff G has a Hamiltonian path.
- $R(G)$ has n^{2} boolean variables $x_{i j}, 1 \leq i, j \leq n$.
- $x_{i j}$ means
the i th position in the Hamiltonian path is occupied by node j.

The Clauses of $R(G)$ and Their Intended Meanings

1. Each node j must appear in the path.

- $x_{1 j} \vee x_{2 j} \vee \cdots \vee x_{n j}$ for each j.

2. No node j appears twice in the path.

- $\neg x_{i j} \vee \neg x_{k j}$ for all i, j, k with $i \neq k$.

3. Every position i on the path must be occupied.

- $x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}$ for each i.

4. No two nodes j and k occupy the same position in the path.

- $\neg x_{i j} \vee \neg x_{i k}$ for all i, j, k with $j \neq k$.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

- $\neg x_{k i} \vee \neg x_{k+1, j}$ for all $(i, j) \notin G$ and $k=1,2, \ldots, n-1$.

The Proof

- $R(G)$ contains $O\left(n^{3}\right)$ clauses.
- $R(G)$ can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From clauses of 1 and 2 , for each node j there is a unique position i such that $T \models x_{i j}$.
- From clauses of 3 and 4 , for each position i there is a unique node j such that $T \models x_{i j}$.
- So there is a permutation π of the nodes such that $\pi(i)=j$ if and only if $T \models x_{i j}$.

The Proof (concluded)

- Clauses of 5 furthermore guarantee that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.
- Conversely, suppose G has a Hamiltonian path

$$
(\pi(1), \pi(2), \ldots, \pi(n))
$$

where π is a permutation.

- Clearly, the truth assignment

$$
T\left(x_{i j}\right)=\text { true if and only if } \pi(i)=j
$$

satisfies all clauses of $R(G)$.

A Comment ${ }^{\text {a }}$

- An answer to "Is $R(G)$ satisfiable?" does answer "Is G Hamiltonian?"
- But a positive answer does not give a Hamiltonian path for G.
- Providing witness is not a requirement of reduction.
- A positive answer to "Is $R(G)$ satisfiable?" plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

[^0]
Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph $G=(V, E)$, we shall construct a variable-free circuit $R(G)$.
- The output of $R(G)$ is true if and only if there is a path from node 1 to node n in G.
- Idea: the Floyd-Warshall algorithm.

The Gates

- The gates are
- $g_{i j k}$ with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
- $h_{i j k}$ with $1 \leq i, j, k \leq n$.
- $g_{i j k}$: There is a path from node i to node j without passing through a node bigger than k.
- $h_{i j k}$: There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{i j 0}=$ true if and only if $i=j$ or $(i, j) \in E$.

The Construction

- $h_{i j k}$ is an AND gate with predecessors $g_{i, k, k-1}$ and $g_{k, j, k-1}$, where $k=1,2, \ldots, n$.
- $g_{i j k}$ is an OR gate with predecessors $g_{i, j, k-1}$ and $h_{i, j, k}$, where $k=1,2, \ldots, n$.
- $g_{1 n n}$ is the output gate.
- Interestingly, $R(G)$ uses no \neg gates: It is a monotone circuit.

Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we will construct a boolean expression $R(C)$ such that $R(C)$ is satisfiable iff C is. $-R(C)$ will turn out to be a CNF.
$-R(C)$ is a depth- 2 circuit; furthermore, each gate has out-degree 1.
- The variables of $R(C)$ are those of C plus g for each gate g of C.
- g's propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses.
- Recall that clauses are \wedge-ed together by definition.

The Clauses of $R(C)$

g is a variable gate x : Add clauses $(\neg g \vee x)$ and $(g \vee \neg x)$.

- Meaning: $g \Leftrightarrow x$.
g is a true gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.
g is a false gate: Add clause $(\neg g)$.
- Meaning: g must be false to make $R(C)$ true.
g is a \neg gate with predecessor gate h : Add clauses $(\neg g \vee \neg h)$ and $(g \vee h)$.
- Meaning: $g \Leftrightarrow \neg h$.

The Clauses of $R(C)$ (concluded)

g is a \vee gate with predecessor gates h and h^{\prime} : Add clauses $(\neg h \vee g),\left(\neg h^{\prime} \vee g\right)$, and $\left(h \vee h^{\prime} \vee \neg g\right)$.

- Meaning: $g \Leftrightarrow\left(h \vee h^{\prime}\right)$.
g is a \wedge gate with predecessor gates h and h^{\prime} : Add clauses $(\neg g \vee h),\left(\neg g \vee h^{\prime}\right)$, and $\left(\neg h \vee \neg h^{\prime} \vee g\right)$.
- Meaning: $g \Leftrightarrow\left(h \wedge h^{\prime}\right)$.
g is the output gate: Add clause (g).
- Meaning: g must be true to make $R(C)$ true.

Note: If gate g feeds gates h_{1}, h_{2}, \ldots, then variable g appears in the clauses for h_{1}, h_{2}, \ldots in $R(C)$.

An Example

$$
\begin{aligned}
& \text { (} \\
& \qquad\left[h_{1} \Leftrightarrow x_{1}\right) \wedge\left(h_{2} \Leftrightarrow x_{2}\right) \wedge\left(h_{3} \Leftrightarrow x_{3}\right) \wedge\left(h_{4} \Leftrightarrow x_{4}\right) \\
& \wedge \quad\left[g_{1} \Leftrightarrow\left(h_{1} \wedge h_{2}\right)\right] \wedge\left[g_{2} \Leftrightarrow\left(h_{3} \vee h_{4}\right)\right] \\
& \left.\left.\wedge \quad\left[g_{5} \Leftrightarrow\left(g_{3} \vee g_{2}\right)\right] \wedge\left(g_{4}\right)\right] \wedge \neg g_{5}\right)
\end{aligned}
$$

An Example (concluded)

- In general, the result is a CNF.
- The CNF has size proportional to the circuit's number of gates.
- The CNF adds new variables to the circuit's original input variables.

Composition of Reductions

Proposition 25 If R_{12} is a reduction from L_{1} to L_{2} and R_{23} is a reduction from L_{2} to L_{3}, then the composition $R_{12} \circ R_{23}$ is a reduction from L_{1} to L_{3}.

- Clearly $x \in L_{1}$ if and only if $R_{23}\left(R_{12}(x)\right) \in L_{3}$.
- How to compute $R_{12} \circ R_{23}$ in space $O(\log n)$, as required by the definition of reduction?

The Proof (continued)

- An obvious way is to generate $R_{12}(x)$ first and then feeding it to R_{23}.
- This takes polynomial time. ${ }^{\text {a }}$
- It takes polynomial time to produce $R_{12}(x)$ of polynomial length.
- It also takes polynomial time to produce $R_{23}\left(R_{12}(x)\right)$.
- Trouble is $R_{12}(x)$ may consume up to polynomial space, much more than the logarithmic space required.

[^1]
The Proof (concluded)

- The trick is to let R_{23} drive the computation.
- It asks R_{12} to deliver each bit of $R_{12}(x)$ when needed.
- When R_{23} wants to read the i th bit, $R_{12}(x)$ will be simulated until the i th bit is available.
- The initial $i-1$ bits should not be written to the string.
- This is feasible as $R_{12}(x)$ is produced in a write-only manner.
- The i th output bit of $R_{12}(x)$ is well-defined because once it is written, it will never be overwritten by R_{12}.

Completeness ${ }^{\text {a }}$

- As reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element?
- It is not altogether obvious that there should be a maximal element.
- Many infinite structures (such as integers and real numbers) do not have maximal elements.
- Hence it may surprise you that most of the complexity classes that we have seen so far have maximal elements.
${ }^{\mathrm{a}}$ Cook (1971) and Levin (1971).

Completeness (concluded)

- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is \mathcal{C}-complete if every $L^{\prime} \in \mathcal{C}$ can be reduced to L.
- Most complexity classes we have seen so far have complete problems!
- Complete problems capture the difficulty of a class because they are the hardest problems in the class.

Hardness

- Let \mathcal{C} be a complexity class.
- L is \mathcal{C}-hard if every $L^{\prime} \in \mathcal{C}$ can be reduced to L.
- It is not required that $L \in \mathcal{C}$.
- If L is \mathcal{C}-hard, then by definition, every \mathcal{C}-complete problem can be reduced to $L .^{\text {a }}$
${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.

Illustration of Completeness and Hardness

Closedness under Reductions

- A class \mathcal{C} is closed under reductions if whenever L is reducible to L^{\prime} and $L^{\prime} \in \mathcal{C}$, then $L \in \mathcal{C}$.
- P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.

Complete Problems and Complexity Classes

Proposition 26 Let \mathcal{C}^{\prime} and \mathcal{C} be two complexity classes such that $\mathcal{C}^{\prime} \subseteq \mathcal{C}$. Assume \mathcal{C}^{\prime} is closed under reductions and L is \mathcal{C}-complete. Then $\mathcal{C}=\mathcal{C}^{\prime}$ if and only if $L \in \mathcal{C}^{\prime}$.

- Suppose $L \in \mathcal{C}^{\prime}$ first.
- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}^{\prime}$.
- Because \mathcal{C}^{\prime} is closed under reductions, $A \in \mathcal{C}^{\prime}$.
- Hence $\mathcal{C} \subseteq \mathcal{C}^{\prime}$.
- As $\mathcal{C}^{\prime} \subseteq \mathcal{C}$, we conclude that $\mathcal{C}=\mathcal{C}^{\prime}$.

The Proof (concluded)

- On the other hand, suppose $\mathcal{C}=\mathcal{C}^{\prime}$.
- As L is \mathcal{C}-complete, $L \in \mathcal{C}$.
- Thus, trivially, $L \in \mathcal{C}^{\prime}$.

Two Important Corollaries

Proposition 26 implies the following.
Corollary $27 P=N P$ if and only if an NP-complete problem in P.

Corollary $28 L=P$ if and only if a P-complete problem is in L.

Complete Problems and Complexity Classes

Proposition 29 Let \mathcal{C}^{\prime} and \mathcal{C} be two complexity classes closed under reductions. If L is complete for both \mathcal{C} and \mathcal{C}^{\prime}, then $\mathcal{C}=\mathcal{C}^{\prime}$.

- All languages $\mathcal{L} \in \mathcal{C}$ reduce to $L \in \mathcal{C}^{\prime}$.
- Since \mathcal{C}^{\prime} is closed under reductions, $\mathcal{L} \in \mathcal{C}^{\prime}$.
- Hence $\mathcal{C} \subseteq \mathcal{C}^{\prime}$.
- The proof for $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ is symmetric.

Table of Computation

- Let $M=(K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.
- Its computation on input x can be thought of as a $|x|^{k} \times|x|^{k}$ table, where $|x|^{k}$ is the time bound.
- It is a sequence of configurations.
- Rows correspond to time steps 0 to $|x|^{k}-1$.
- Columns are positions in the string of M.
- The (i, j) th table entry represents the contents of position j of the string after i steps of computation.

Some Conventions To Simplify the Table

- M halts after at most $|x|^{k}-2$ steps.
- The string length hence never exceeds $|x|^{k}$.
- Assume a large enough k to make it true for $|x| \geq 2$.
- Pad the table with \bigsqcup s so that each row has length $|x|^{k}$.
- The computation will never reach the right end of the table for lack of time.
- If the cursor scans the j th position at time i when M is at state q and the symbol is σ, then the (i, j) th entry is a new symbol σ_{q}.

Some Conventions To Simplify the Table (continued)

- If q is "yes" or "no," simply use "yes" or "no" instead of σ_{q}.
- Modify M so that the cursor starts not at \triangleright but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright.
- So the first symbol in every row is a \triangleright and not a \triangleright_{q}.

Some Conventions To Simplify the Table (concluded)

- Suppose M has halted before its time bound of $|x|^{k}$, so that "yes" or "no" appears at a row before the last.
- Then all subsequent rows will be identical to that row.
- M accepts x if and only if the $\left(|x|^{k}-1, j\right)$ th entry is "yes" for some position j.

Comments

- Each row is essentially a configuration.
- If the input $x=010001$, then the first row is

- A typical row may look like

Comments (concluded)

- The last rows must look like

- Three out of the table's 4 borders are known:

A P-Complete Problem

Theorem 30 (Ladner (1975)) CIRCUIT VALUE is P-complete.

- It is easy to see that circuit value $\in \mathrm{P}$.
- For any $L \in \mathrm{P}$, we will construct a reduction R from L to CIRCUIT VALUE.
- Given any input $x, R(x)$ is a variable-free circuit such that $x \in L$ if and only if $R(x)$ evaluates to true.
- Let M decide L in time n^{k}.
- Let T be the computation table of M on x.

The Proof (continued)

- When $i=0$, or $j=0$, or $j=|x|^{k}-1$, then the value of $T_{i j}$ is known.
- The j th symbol of x or \bigsqcup, a \triangleright, and a \bigsqcup, respectively.
- Recall that three out of T 's 4 borders are known.

The Proof (continued)

- Consider other entries $T_{i j}$.
- $T_{i j}$ depends on only $T_{i-1, j-1}, T_{i-1, j}$, and $T_{i-1, j+1}$.

$T_{i-1, j-1}$	$T_{i-1, j}$	$T_{i-1, j+1}$
	$T_{i j}$	

- Let Γ denote the set of all symbols that can appear on the table: $\Gamma=\Sigma \cup\left\{\sigma_{q}: \sigma \in \Sigma, q \in K\right\}$.
- Encode each symbol of Γ as an m-bit number, where ${ }^{\text {a }}$

$$
m=\left\lceil\log _{2}|\Gamma|\right\rceil .
$$

${ }^{\text {a }}$ State assignment in circuit design.

The Proof (continued)

- Let the m-bit binary string $S_{i j 1} S_{i j 2} \cdots S_{i j m}$ encode $T_{i j}$.
- We may treat them interchangeably without ambiguity.
- The computation table is now a table of binary entries $S_{i j \ell}$, where

$$
\begin{aligned}
& 0 \leq i \leq n^{k}-1, \\
& 0 \leq j \leq n^{k}-1, \\
& 1 \leq \ell \leq m .
\end{aligned}
$$

The Proof (continued)

- Each bit $S_{i j \ell}$ depends on only $3 m$ other bits:

$$
\begin{array}{lllll}
T_{i-1, j-1}: & S_{i-1, j-1,1} & S_{i-1, j-1,2} & \cdots & S_{i-1, j-1, m} \\
T_{i-1, j}: & S_{i-1, j, 1} & S_{i-1, j, 2} & \cdots & S_{i-1, j, m} \\
T_{i-1, j+1}: & S_{i-1, j+1,1} & S_{i-1, j+1,2} & \cdots & S_{i-1, j+1, m}
\end{array}
$$

- There is a boolean function F_{ℓ} with $3 m$ inputs such that

$$
\begin{aligned}
S_{i j \ell}= & F_{\ell}\left(S_{i-1, j-1,1}, S_{i-1, j-1,2}, \ldots, S_{i-1, j-1, m}\right. \\
& S_{i-1, j, 1}, S_{i-1, j, 2}, \ldots, S_{i-1, j, m} \\
& \left.S_{i-1, j+1,1}, S_{i-1, j+1,2}, \ldots, S_{i-1, j+1, m}\right)
\end{aligned}
$$

where for all $i, j>0$ and $1 \leq \ell \leq m$.

The Proof (continued)

- These F_{i} 's depend only on M 's specification, not on x.
- Their sizes are fixed.
- These boolean functions can be turned into boolean circuits.
- Compose these m circuits in parallel to obtain circuit C with $3 m$-bit inputs and m-bit outputs.
- Schematically, $C\left(T_{i-1, j-1}, T_{i-1, j}, T_{i-1, j+1}\right)=T_{i j} .{ }^{\text {a }}$
${ }^{\text {a }} C$ is like an ASIC (application-specific IC) chip.

Circuit C

The Proof (concluded)

- A copy of circuit C is placed at each entry of the table.
- Exceptions are the top row and the two extreme columns.
- $R(x)$ consists of $\left(|x|^{k}-1\right)\left(|x|^{k}-2\right)$ copies of circuit C.
- Without loss of generality, assume the output "yes"/"no" appear at position $\left(|x|^{k}-1,1\right)$.
- Encode "yes" as 1 and "no" as 0 .

A Corollary

The construction in the above proof yields the following, more general result.

Corollary 31 If $L \in \operatorname{TIME}(T(n))$, then a circuit with $O\left(T^{2}(n)\right)$ gates can decide if $x \in L$ for $|x|=n$.

[^0]: ${ }^{\text {a }}$ Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.

[^1]: ${ }^{\text {a }}$ Hence our concern below disappears had we required reductions to be in P instead of L .

