
Reductions and Completeness

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if there is a transformation R which for
every input x of B yields an equivalent input R(x) of A.

– The answer to x for B is the same as the answer to
R(x) for A.

– There must be restrictions on the complexity of
computing R.

– Otherwise, R(x) might as well solve B.

∗ E.g., R(x) = “yes” if and only if x ∈ B!

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 206

Degrees of Difficulty (concluded)

• We say problem A is at least as hard as problem B if B
reduces to A.

• This makes intuitive sense: If A is able to solve your
problem B after only a little bit of work (R), then A
must be at least as hard.

– If A were easy, it combined with R (which is also
easy) would make B easy, too.a

aThanks to a lively class discussion on October 13, 2009.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 207

Reduction

x yes/noR(x)
R

algorithm
for A

Solving problem B by calling the algorithm for problem once
and without further processing its answer.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 208

Commentsa

• Suppose B reduces to A via a transformation R.

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.b

• So some instances of A may never appear in the range of
the reduction R.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
bR(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 2009.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 209

Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in space O(log n).

• Furthermore, for all inputs x, x ∈ L1 if and only if
R(x) ∈ L2.

• R is said to be a (Karp) reduction from L1 to L2.

• Note that by Theorem 22 (p. 189), R runs in polynomial
time.

• Suppose R is a reduction from L1 to L2.

• Then solving “R(x) ∈ L2” is an algorithm for solving
“x ∈ L1.”

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 210

A Paradox?

• Degree of difficulty is not defined in terms of absolute
complexity.

• So a language B ∈ TIME(n99) may be “easier” than a
language A ∈ TIME(n3).

– This happens when B is reducible to A.

• But isn’t this a contradiction if the best algorithm for B
requires n99 steps?

• That is, how can a problem requiring n99 steps be
reducible to a problem solvable in n3 steps?

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 211

A Paradox? (concluded)

• The so-called contradiction does not hold.

• When we solve the problem “x ∈ B?” via “R(x) ∈ A?”,
we must consider the time spent by R(x) and its length
|R(x) |.

• If |R(x) | = Ω(n33), then answering “R(x) ∈ A?” takes
Ω((n33)3) = Ω(n99) steps, which is fine.

• Suppose, on the other hand, that |R(x) | = o(n33).

• Then R(x) must run in time Ω(n99) to make the overall
time for answering “R(x) ∈ A?” take Ω(n99) steps.

• In either case, the contradiction disappears.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 212

hamiltonian path

• A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, . . . , n.

• A Hamiltonian path can be expressed as a permutation
π of { 1, 2, . . . , n } such that

– π(i) = j means the ith position is occupied by node j.

– (π(i), π(i + 1)) ∈ G for i = 1, 2, . . . , n− 1.

• hamiltonian path asks if a graph has a Hamiltonian
path.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 213

Reduction of hamiltonian path to sat

• Given a graph G, we shall construct a CNF R(G) such
that R(G) is satisfiable iff G has a Hamiltonian path.

• R(G) has n2 boolean variables xij , 1 ≤ i, j ≤ n.

• xij means

the ith position in the Hamiltonian path is
occupied by node j.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 214

1

2
3

4

5
6

78
9

x12 = x21 = x34 = x45 = x53 = x69 = x76 = x88 = x97 = 1;
π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 5, π(5) = 3, π(6) =
9, π(7) = 6, π(8) = 8, π(9) = 7.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 215

The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

• x1j ∨ x2j ∨ · · · ∨ xnj for each j.

2. No node j appears twice in the path.

• ¬xij ∨ ¬xkj for all i, j, k with i 6= k.

3. Every position i on the path must be occupied.

• xi1 ∨ xi2 ∨ · · · ∨ xin for each i.

4. No two nodes j and k occupy the same position in the path.

• ¬xij ∨ ¬xik for all i, j, k with j 6= k.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

• ¬xki ∨ ¬xk+1,j for all (i, j) 6∈ G and k = 1, 2, . . . , n− 1.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 216

The Proof

• R(G) contains O(n3) clauses.

• R(G) can be computed efficiently (simple exercise).

• Suppose T |= R(G).

• From clauses of 1 and 2, for each node j there is a
unique position i such that T |= xij .

• From clauses of 3 and 4, for each position i there is a
unique node j such that T |= xij .

• So there is a permutation π of the nodes such that
π(i) = j if and only if T |= xij .

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 217

The Proof (concluded)

• Clauses of 5 furthermore guarantee that
(π(1), π(2), . . . , π(n)) is a Hamiltonian path.

• Conversely, suppose G has a Hamiltonian path

(π(1), π(2), . . . , π(n)),

where π is a permutation.

• Clearly, the truth assignment

T (xij) = true if and only if π(i) = j

satisfies all clauses of R(G).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 218

A Commenta

• An answer to “Is R(G) satisfiable?” does answer “Is G

Hamiltonian?”

• But a positive answer does not give a Hamiltonian path
for G.

– Providing witness is not a requirement of reduction.

• A positive answer to “Is R(G) satisfiable?” plus a
satisfying truth assignment does provide us with a
Hamiltonian path for G.

aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 219

Reduction of reachability to circuit value

• Note that both problems are in P.

• Given a graph G = (V,E), we shall construct a
variable-free circuit R(G).

• The output of R(G) is true if and only if there is a path
from node 1 to node n in G.

• Idea: the Floyd-Warshall algorithm.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 220

The Gates

• The gates are

– gijk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n.

– hijk with 1 ≤ i, j, k ≤ n.

• gijk: There is a path from node i to node j without
passing through a node bigger than k.

• hijk: There is a path from node i to node j passing
through k but not any node bigger than k.

• Input gate gij0 = true if and only if i = j or (i, j) ∈ E.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 221

The Construction

• hijk is an and gate with predecessors gi,k,k−1 and
gk,j,k−1, where k = 1, 2, . . . , n.

• gijk is an or gate with predecessors gi,j,k−1 and hi,j,k,
where k = 1, 2, . . . , n.

• g1nn is the output gate.

• Interestingly, R(G) uses no ¬ gates: It is a monotone
circuit.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 222

Reduction of circuit sat to sat

• Given a circuit C, we will construct a boolean
expression R(C) such that R(C) is satisfiable iff C is.

– R(C) will turn out to be a CNF.

– R(C) is a depth-2 circuit; furthermore, each gate has
out-degree 1.

• The variables of R(C) are those of C plus g for each
gate g of C.

– g’s propagate the truth values for the CNF.

• Each gate of C will be turned into equivalent clauses.

• Recall that clauses are ∧-ed together by definition.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 223

The Clauses of R(C)

g is a variable gate x: Add clauses (¬g ∨ x) and (g ∨ ¬x).

• Meaning: g ⇔ x.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (¬g).

• Meaning: g must be false to make R(C) true.

g is a ¬ gate with predecessor gate h: Add clauses
(¬g ∨ ¬h) and (g ∨ h).

• Meaning: g ⇔ ¬h.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 224

The Clauses of R(C) (concluded)

g is a ∨ gate with predecessor gates h and h′: Add
clauses (¬h ∨ g), (¬h′ ∨ g), and (h ∨ h′ ∨ ¬g).

• Meaning: g ⇔ (h ∨ h′).

g is a ∧ gate with predecessor gates h and h′: Add
clauses (¬g ∨ h), (¬g ∨ h′), and (¬h ∨ ¬h′ ∨ g).

• Meaning: g ⇔ (h ∧ h′).

g is the output gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

Note: If gate g feeds gates h1, h2, . . ., then variable g

appears in the clauses for h1, h2, . . . in R(C).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 225

An Example

∧

[� [� [�
∨

[�

¬∧

∨

K� K� K� K�
J� J�

J� J�
J�

(h1 ⇔ x1) ∧ (h2 ⇔ x2) ∧ (h3 ⇔ x3) ∧ (h4 ⇔ x4)

∧ [g1 ⇔ (h1 ∧ h2)] ∧ [g2 ⇔ (h3 ∨ h4)]

∧ [g3 ⇔ (g1 ∧ g2)] ∧ (g4 ⇔ ¬g2)

∧ [g5 ⇔ (g3 ∨ g4)] ∧ g5.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 226

An Example (concluded)

• In general, the result is a CNF.

• The CNF has size proportional to the circuit’s number
of gates.

• The CNF adds new variables to the circuit’s original
input variables.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 227

Composition of Reductions

Proposition 25 If R12 is a reduction from L1 to L2 and
R23 is a reduction from L2 to L3, then the composition
R12 ◦R23 is a reduction from L1 to L3.

• Clearly x ∈ L1 if and only if R23(R12(x)) ∈ L3.

• How to compute R12 ◦R23 in space O(log n), as required
by the definition of reduction?

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 228

The Proof (continued)

• An obvious way is to generate R12(x) first and then
feeding it to R23.

• This takes polynomial time.a

– It takes polynomial time to produce R12(x) of
polynomial length.

– It also takes polynomial time to produce
R23(R12(x)).

• Trouble is R12(x) may consume up to polynomial space,
much more than the logarithmic space required.

aHence our concern below disappears had we required reductions to

be in P instead of L.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 229

The Proof (concluded)

• The trick is to let R23 drive the computation.

• It asks R12 to deliver each bit of R12(x) when needed.

• When R23 wants to read the ith bit, R12(x) will be
simulated until the ith bit is available.

– The initial i− 1 bits should not be written to the
string.

• This is feasible as R12(x) is produced in a write-only
manner.

– The ith output bit of R12(x) is well-defined because
once it is written, it will never be overwritten by R12.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 230

Completenessa

• As reducibility is transitive, problems can be ordered
with respect to their difficulty.

• Is there a maximal element?

• It is not altogether obvious that there should be a
maximal element.

– Many infinite structures (such as integers and real
numbers) do not have maximal elements.

• Hence it may surprise you that most of the complexity
classes that we have seen so far have maximal elements.

aCook (1971) and Levin (1971).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 231

Completeness (concluded)

• Let C be a complexity class and L ∈ C.
• L is C-complete if every L′ ∈ C can be reduced to L.

– Most complexity classes we have seen so far have
complete problems!

• Complete problems capture the difficulty of a class
because they are the hardest problems in the class.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 232

Hardness

• Let C be a complexity class.

• L is C-hard if every L′ ∈ C can be reduced to L.

• It is not required that L ∈ C.
• If L is C-hard, then by definition, every C-complete

problem can be reduced to L.a

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,

2003.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 233

Illustration of Completeness and Hardness

A1

A2

A3

A4

L

A1

A2

A3

A4

L

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 234

Closedness under Reductions

• A class C is closed under reductions if whenever L is
reducible to L′ and L′ ∈ C, then L ∈ C.

• P, NP, coNP, L, NL, PSPACE, and EXP are all closed
under reductions.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 235

Complete Problems and Complexity Classes

Proposition 26 Let C′ and C be two complexity classes
such that C′ ⊆ C. Assume C′ is closed under reductions and
L is C-complete. Then C = C′ if and only if L ∈ C′.
• Suppose L ∈ C′ first.

• Every language A ∈ C reduces to L ∈ C′.
• Because C′ is closed under reductions, A ∈ C′.
• Hence C ⊆ C′.
• As C′ ⊆ C, we conclude that C = C′.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 236

The Proof (concluded)

• On the other hand, suppose C = C′.
• As L is C-complete, L ∈ C.
• Thus, trivially, L ∈ C′.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 237

Two Important Corollaries

Proposition 26 implies the following.

Corollary 27 P = NP if and only if an NP-complete
problem in P.

Corollary 28 L = P if and only if a P-complete problem is
in L.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 238

Complete Problems and Complexity Classes

Proposition 29 Let C′ and C be two complexity classes
closed under reductions. If L is complete for both C and C′,
then C = C′.
• All languages L ∈ C reduce to L ∈ C′.
• Since C′ is closed under reductions, L ∈ C′.
• Hence C ⊆ C′.
• The proof for C′ ⊆ C is symmetric.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 239

Table of Computation

• Let M = (K, Σ, δ, s) be a single-string polynomial-time
deterministic TM deciding L.

• Its computation on input x can be thought of as a
|x |k × |x |k table, where |x |k is the time bound.

– It is a sequence of configurations.

• Rows correspond to time steps 0 to |x |k − 1.

• Columns are positions in the string of M .

• The (i, j)th table entry represents the contents of
position j of the string after i steps of computation.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 240

Some Conventions To Simplify the Table

• M halts after at most |x |k − 2 steps.

– The string length hence never exceeds |x |k.

• Assume a large enough k to make it true for |x | ≥ 2.

• Pad the table with
⊔

s so that each row has length |x |k.

– The computation will never reach the right end of
the table for lack of time.

• If the cursor scans the jth position at time i when M is
at state q and the symbol is σ, then the (i, j)th entry is
a new symbol σq.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 241

Some Conventions To Simplify the Table (continued)

• If q is “yes” or “no,” simply use “yes” or “no” instead of
σq.

• Modify M so that the cursor starts not at ¤ but at the
first symbol of the input.

• The cursor never visits the leftmost ¤ by telescoping
two moves of M each time the cursor is about to move
to the leftmost ¤.

• So the first symbol in every row is a ¤ and not a ¤q.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 242

Some Conventions To Simplify the Table (concluded)

• Suppose M has halted before its time bound of |x |k, so
that “yes” or “no” appears at a row before the last.

• Then all subsequent rows will be identical to that row.

• M accepts x if and only if the (|x |k − 1, j)th entry is
“yes” for some position j.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 243

Comments

• Each row is essentially a configuration.

• If the input x = 010001, then the first row is

| x |k︷ ︸︸ ︷
¤0s10001

⊔ ⊔
· · ·

⊔

• A typical row may look like

| x |k︷ ︸︸ ︷
¤10100q01110100

⊔ ⊔
· · ·

⊔

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 244

Comments (concluded)

• The last rows must look like

| x |k︷ ︸︸ ︷
¤ · · · “yes” · · ·

⊔
or

| x |k︷ ︸︸ ︷
¤ · · · “no” · · ·

⊔

• Three out of the table’s 4 borders are known:

#��D��E��F��G��H��I���#

#

�

�
�# �

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 245

A P-Complete Problem

Theorem 30 (Ladner (1975)) circuit value is
P-complete.

• It is easy to see that circuit value ∈ P.

• For any L ∈ P, we will construct a reduction R from L

to circuit value.

• Given any input x, R(x) is a variable-free circuit such
that x ∈ L if and only if R(x) evaluates to true.

• Let M decide L in time nk.

• Let T be the computation table of M on x.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 246

The Proof (continued)

• When i = 0, or j = 0, or j = |x |k − 1, then the value of
Tij is known.

– The jth symbol of x or
⊔

, a ¤, and a
⊔

, respectively.

– Recall that three out of T ’s 4 borders are known.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 247

The Proof (continued)

• Consider other entries Tij .

• Tij depends on only Ti−1,j−1, Ti−1,j , and Ti−1,j+1.

Ti−1,j−1 Ti−1,j Ti−1,j+1

Tij

• Let Γ denote the set of all symbols that can appear on
the table: Γ = Σ ∪ {σq : σ ∈ Σ, q ∈ K}.

• Encode each symbol of Γ as an m-bit number, wherea

m = dlog2 |Γ |e.
aState assignment in circuit design.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 248

The Proof (continued)

• Let the m-bit binary string Sij1Sij2 · · ·Sijm encode Tij .

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries
Sij`, where

0 ≤ i ≤ nk − 1,

0 ≤ j ≤ nk − 1,

1 ≤ ` ≤ m.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 249

The Proof (continued)

• Each bit Sij` depends on only 3m other bits:

Ti−1,j−1: Si−1,j−1,1 Si−1,j−1,2 · · · Si−1,j−1,m

Ti−1,j : Si−1,j,1 Si−1,j,2 · · · Si−1,j,m

Ti−1,j+1: Si−1,j+1,1 Si−1,j+1,2 · · · Si−1,j+1,m

• There is a boolean function F` with 3m inputs such that

Sij` = F`(Si−1,j−1,1, Si−1,j−1,2, . . . , Si−1,j−1,m,

Si−1,j,1, Si−1,j,2, . . . , Si−1,j,m,

Si−1,j+1,1, Si−1,j+1,2, . . . , Si−1,j+1,m),

where for all i, j > 0 and 1 ≤ ` ≤ m.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 250

The Proof (continued)

• These Fi’s depend only on M ’s specification, not on x.

• Their sizes are fixed.

• These boolean functions can be turned into boolean
circuits.

• Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.

– Schematically, C(Ti−1,j−1, Ti−1,j , Ti−1,j+1) = Tij .a

aC is like an ASIC (application-specific IC) chip.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 251

Circuit C

Ti - 1,j - 1

Tij

Ti - 1,j + 1Ti - 1,j

C

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 252

The Proof (concluded)

• A copy of circuit C is placed at each entry of the table.

– Exceptions are the top row and the two extreme
columns.

• R(x) consists of (|x |k − 1)(|x |k − 2) copies of circuit C.

• Without loss of generality, assume the output
“yes”/“no” appear at position (|x |k − 1, 1).

• Encode “yes” as 1 and “no” as 0.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 253

The Computation Tableau and R(x)

#��D��E��F��G��H��I���
#
#

�
�

& & & & & &

& & & & & &

& & & & & &

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 254

A Corollary

The construction in the above proof yields the following,
more general result.

Corollary 31 If L ∈ TIME(T (n)), then a circuit with
O(T 2(n)) gates can decide if x ∈ L for |x | = n.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 255

