Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{NSPACE}(f(n))
$$

if there is an NTM with input and output that decides L and operates within space bound $f(n)$.

- NSPACE $(f(n))$ is a set of languages.
- As in the linear speedup theorem (Theorem 3 on p. 61), constant coefficients do not matter.

Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- reachability asks if, given nodes a and b, does G contain a path from a to b ?
- Can be easily solved in polynomial time by breadth-first search.
- How about the nondeterministic space complexity?

The First Try in NSPACE $(n \log n)$

1: $x_{1}:=a ;\{$ Assume $a \neq b$.\}
2: for $i=2,3, \ldots, n$ do
3: Guess $x_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} ;\{$ The i th node. $\}$
4: end for
5: for $i=2,3, \ldots, n$ do
6: if $\left(x_{i-1}, x_{i}\right) \notin E$ then
7: "no";
8: end if
9: \quad if $x_{i}=b$ then
10: "yes";
11: end if
12: end for
13: "no";

In Fact REACHABILIty $\in \operatorname{NSPACE}(\log n)$

1: $x:=a$;
2: for $i=2,3, \ldots, n$ do
3: Guess $y \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} ;\{$ The next node. $\}$
4: if $(x, y) \notin E$ then
5: "no";
6: end if
7: if $y=b$ then
8: "yes";
9: end if
10: $\quad x:=y ;$
11: end for
12: "no";

Space Analysis

- Variables i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

$$
\text { REACHABILITY } \in \text { NSPACE }(\log n) .
$$

- REACHABILITY with more than one terminal node also has the same complexity.
- REACHABILITY $\in \mathrm{P}$ (p. 184).

Undecidability

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do?

- Bertrand Russell (1872-1970), Autobiography, Vol. I

Infinite Sets

- A set is countable if it is finite or if it can be put in one-one correspondence with $\mathbb{N}=\{0,1, \ldots\}$, the set of natural numbers.
- Set of integers \mathbb{Z}.

$$
\begin{array}{rl}
* & 0 \leftrightarrow 0,1 \leftrightarrow 1,2 \leftrightarrow 3,3 \leftrightarrow 5, \ldots,-1 \leftrightarrow 2,-2 \leftrightarrow \\
& 4 \\
& -3 \leftrightarrow 6, \ldots
\end{array}
$$

- Set of positive integers $\mathbb{Z}^{+}: i-1 \leftrightarrow i$.
- Set of odd integers: $(i-1) / 2 \leftrightarrow i$.
- Set of rational numbers: See next page.

Rational Numbers Are Countable

Cardinality

- For any set A, define $|A|$ as A 's cardinality (size).
- Two sets are said to have the same cardinality, or

$$
|A|=|B| \quad \text { or } \quad A \sim B,
$$

if there exists a one-to-one correspondence between their elements.

- 2^{A} denotes set A 's power set, that is $\{B: B \subseteq A\}$.
- If $|A|=k$, then $\left|2^{A}\right|=2^{k}$.
$-|A|<\left|2^{A}\right|$ when A is finite as $k<2^{k}$.

Cardinality (concluded)

- Define $|A| \leq|B|$ if there is a one-to-one correspondence between A and a subset of B 's.
- Define $|A|<|B|$ if $|A| \leq|B|$ but $|A| \neq|B|$.
- Obviously, if $A \subseteq B$, then $|A| \leq|B|$.
- But if $A \subsetneq B$, then $|A|<|B|$?

Cardinality and Infinite Sets

- If A and B are infinite sets, it is possible that $A \subsetneq B$ yet $|A|=|B|$.
- The set of integers properly contains the set of odd integers.
- But the set of integers has the same cardinality as the set of odd integers (p. 96).
- A lot of "paradoxes" arise.

Galileo's ${ }^{\text {a }}$ Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid ${ }^{\text {b }}$ that the whole is greater than any of its proper parts.
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinion.

[^0]
Hilbert's ${ }^{\text {a }}$ Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now imagine a hotel with an infinite number of rooms, all of which are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor.
- He moves the person previously occupying Room 1 to Room 2, the person from Room 2 to Room 3, and so on.
- The new customer now occupies Room 1.

[^1]
Hilbert's Paradox of the Grand Hotel (concluded)

- Now imagine a hotel with an infinite number of rooms, all taken up.
- An infinite number of new guests come in and ask for rooms.
- "Certainly," says the proprietor.
- He moves the occupant of Room 1 to Room 2, the occupant of Room 2 to Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

Cantor's ${ }^{\mathrm{a}}$ Theorem

Theorem 6 The set of all subsets of $\mathbb{N}\left(2^{\mathbb{N}}\right)$ is infinite and not countable.

- Suppose it is countable with $f: \mathbb{N} \rightarrow 2^{\mathbb{N}}$ being a bijection.
- Consider the set $B=\{k \in \mathbb{N}: k \notin f(k)\} \subseteq \mathbb{N}$.
- Suppose $B=f(n)$ for some $n \in \mathbb{N}$.

[^2]
The Proof (concluded)

- If $n \in f(n)=B$, then $n \in B$, but then $n \notin B$ by B 's definition.
- If $n \notin f(n)=B$, then $n \notin B$, but then $n \in B$ by B 's definition.
- Hence $B \neq f(n)$ for any n.
- f is not a bijection, a contradiction.

Georg Cantor (1845-1918)

Cantor's Diagonalization Argument Illustrated

A Corollary of Cantor's Theorem

Corollary $\mathbf{7}$ For any set T, finite or infinite,

$$
|T|<\left|2^{T}\right| .
$$

- The inequality holds in the finite T case.
- Assume T is infinite now.
- To prove $|T| \leq\left|2^{T}\right|$, simply consider $f(x)=\{x\} \in 2^{T}$.
- f associates $T=\{a, b, c, \ldots\}$ with $\{\{a\},\{b\},\{c\}, \ldots\} \subseteq 2^{T}$.
- To prove the strict inequality $|T| \lesseqgtr\left|2^{T}\right|$, we use the same argument as Cantor's theorem.

A Second Corollary of Cantor's Theorem

Corollary 8 The set of all functions on \mathbb{N} is not countable.

- It suffices to prove it for functions from \mathbb{N} to $\{0,1\}$.
- Every such function $f: \mathbb{N} \rightarrow\{0,1\}$ determines a set

$$
\{n: f(n)=1\} \subseteq \mathbb{N}
$$

and vice versa.

- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $\left|2^{\mathbb{N}}\right|$.
- Corollary 7 (p. 109) then implies the claim.

Existence of Uncomputable Problems

- Every program is a finite sequence of 0 s and 1 s , thus a nonnegative integer.
- Hence every program corresponds to some integer.
- The set of programs is countable.
- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 8 (p. 110).
- So there are functions for which no programs exist.

Universal Turing Machine ${ }^{\text {a }}$

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
- Both M and x are over the alphabet of U.
- U simulates M on x so that

$$
U(M ; x)=M(x) .
$$

- U is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

[^3]
The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We knew undecidable problems exist (p. 111).
- We now define a concrete undecidable problem, the halting problem:

$$
H=\{M ; x: M(x) \neq \nearrow\} .
$$

- Does M halt on input x ?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If $M(x)$ diverges, so does U.
- This TM accepts H.
- Membership of x in any recursively enumerative language accepted by M can be answered by asking

$$
M ; x \in H ?
$$

H Is Not Recursive

- Suppose there is a TM M_{H} that decides H.
- Consider the program $D(M)$ that calls M_{H} :

1: if $M_{H}(M ; M)=$ "yes" then
2: \quad; \{Writing an infinite loop is easy, right? $\}$
3: else
4: "yes";
5: end if

- Consider $D(D)$:
$-D(D)=\nearrow \Rightarrow M_{H}(D ; D)=$ "yes" $\Rightarrow D ; D \in H \Rightarrow$ $D(D) \neq \nearrow$, a contradiction.
$-D(D)="$ yes" $\Rightarrow M_{H}(D ; D)="$ no" $\Rightarrow D ; D \notin H \Rightarrow$ $D(D)=\nearrow$, a contradiction.

Comments

- Two levels of interpretations of M :
- A sequence of 0 s and 1 s (data).
- An encoding of instructions (programs).
- There are no paradoxes.
- Concepts should be familiar to computer scientists.
- Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, etc.

Self-Loop Paradoxes

Cantor's Paradox (1899): Let T be the set of all sets. ${ }^{\text {a }}$

- Then $2^{T} \subseteq T$ because 2^{T} is a set.
- But we know $\left|2^{T}\right|>|T|$ (p. 109)!
- We got a "contradiction."
- So what gives?
- Are we willing to give up Cantor's theorem?
- If not, what is a set?

[^4]
Self-Loop Paradoxes (continued)

Russell's Paradox (1901): Consider $R=\{A: A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction."

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."
Hypochondriac: a patient (like Gödel) with imaginary symptoms and ailments.

Bertrand Russell (1872-1970)

Self-Loop Paradoxes (concluded)

Sharon Stone in The Specialist (1994): "I'm not a woman you can trust."

Spin City: "I am not gay, but my boyfriend is."
Numbers 12:3, Old Testament: "Moses was the most humble person in all the world [\cdots]" (attributed to Moses).

Self-Loop Paradoxes and Turing Machine? ${ }^{\text {a }}$

- Can self-loop paradoxes happen to Turing machine?
- If so, will it shake the foundation of the theory of computation?
- If not, why?
${ }^{\text {a Contributed by a student at Vanung University on June 6, } 2008 . ~}$

Reductions in Proving Undecidability

- Suppose we are asked to prove L is undecidable.
- Language H is known to be undecidable.
- We try to find a computable transformation (called reduction) R such that ${ }^{\text {a }}$

$$
\forall x\{R(x) \in L \text { if and only if } x \in H\}
$$

- We can answer " $x \in H$?" for any x by asking " $R(x) \in L$?" instead.
- This suffices to prove that L is undecidable.
${ }^{\text {a }}$ Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.

More Undecidability

- $H^{*}=\{M: M$ halts on all inputs $\}$.
- Given the question " $M ; x \in H$?" we construct the following machine: ${ }^{\text {a }}$

$$
M_{x}(y): M(x)
$$

- M_{x} halts on all inputs if and only if M halts on x.
- In other words, $M_{x} \in H^{*}$ if and only if $M ; x \in H$.
- So if H^{*} were recursive, H would be recursive, a contradiction.

[^5]
More Undecidability (concluded)

- $\{M ; x$: there is a y such that $M(x)=y\}$.
- $\{M ; x$: the computation M on input x uses all states of $M\}$.
- $\{M ; x ; y: M(x)=y\}$.

Complements of Recursive Languages

Lemma 9 If L is recursive, then so is \bar{L}.

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}.

Recursive and Recursively Enumerable Languages

Lemma $10 L$ is recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and \bar{M} in an interleaved fashion.
- If M accepts, then $x \in L$ and M^{\prime} halts on state "yes."
- If \bar{M} accepts, then $x \notin L$ and M^{\prime} halts on state "no."

A Very Useful Corollary and Its Consequences

Corollary $11 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 10 (p. 126), L is recursive, a contradiction.

Corollary $12 \bar{H}$ is not recursively enumerable.

$R, R E$, and coRE

RE: The set of all recursively enumerable languages.
coRE: The set of all languages whose complements are recursively enumerable (note that coRE is not $\overline{\mathrm{RE}}$).

- $\operatorname{coRE}=\{L: \bar{L} \in \operatorname{RE}\}$.
- $\overline{\mathrm{RE}}=\{L: L \notin \mathrm{RE}\}$.
\mathbf{R} : The set of all recursive languages.

R, RE, and coRE (concluded)

- $\mathrm{R}=\mathrm{RE} \cap \operatorname{coRE}$ (p. 126).
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 114, p. 115, and p. 127).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 127).
- There are languages in neither RE nor coRE.

Undecidability in Logic and Mathematics

- First-order logic is undecidable. ${ }^{\text {a }}$
- Natural numbers with addition and multiplication is undecidable. ${ }^{\text {b }}$
- Rational numbers with addition and multiplication is undecidable. ${ }^{\text {c }}$

[^6]
[^0]: ${ }^{\text {a }}$ Galileo (1564-1642).
 ${ }^{\mathrm{b}}$ Euclid (325 B.C.-265 B.C.).

[^1]: ${ }^{\text {a }}$ David Hilbert (1862-1943).

[^2]: ${ }^{\text {a }}$ Georg Cantor (1845-1918). According to Kac and Ulam, "[If] one had to name a single person whose work has had the most decisive influence on the present spirit of mathematics, it would almost surely be Georg Cantor."

[^3]: a Turing (1936).

[^4]: ${ }^{\text {a }}$ Recall this ontological argument for the existence of God by St Anselm (-1109) in the 11th century: If something is possible but is not part of God, then God is not the greatest possible object of thought, a contradiction.

[^5]: ${ }^{\text {a }}$ Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_{x} ignores its input $y ; x$ is part of M_{x} 's code but not M_{x} 's input.

[^6]: ${ }^{a}$ Church (1936).
 ${ }^{\text {b }}$ Rosser (1937).
 ${ }^{c}$ Robinson (1948).

