Theory of Computation

Final Examination on January 13, 2009
Problem 1 (25 points). Show that if SAT $\in \mathrm{P}$, then FSAT has a polynomialtime algorithm. (Hint: You may want to use the self-reducibility of SAT.)

Problem 2 (25 points). Let x be a random variable taking positive integer values. Show that for any $k>0, \operatorname{prob}[x \geq k E[x]] \leq 1 / k$.

Problem 3 (25 points). In the slides, we have shown a 2-round interactive proof system for GRAPH NONISOMORPHISM. Hence GRAPH NONISOMORPHISM is in IP. But is GRAPH ISOMORPHISM also in IP? Briefly justify your answer.

Problem 4 (25 points). Show that if $\# S A T \in F P$, then $P=N P$.

