Theory of Computation

Final Examination on January 13, 2009

Problem 1 (25 points). Show that if $SAT \in P$, then FSAT has a polynomialtime algorithm. (Hint: You may want to use the self-reducibility of SAT.)

Problem 2 (25 points). Let x be a random variable taking positive integer values. Show that for any k > 0, $\operatorname{prob}[x \ge kE[x]] \le 1/k$.

Problem 3 (25 points). In the slides, we have shown a 2-round interactive proof system for GRAPH NONISOMORPHISM. Hence GRAPH NONISO-MORPHISM is in IP. But is GRAPH ISOMORPHISM also in IP? Briefly justify your answer.

Problem 4 (25 points). Show that if $\#SAT \in FP$, then P = NP.